工程光学实验教材实验一自组望远镜 (测量实验)一、实验目的了解望远镜的基本原理和结构,并掌握其调节、使用和测量它的放大率的方法。
二、实验原理最简单的望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凸透镜作为目镜组合而成。
远处的物经过物镜在其后焦面附近成一缩小的倒立实像,物镜的像方焦平面与目镜的物方焦平面重合。
而目镜起一放大镜的作用,把这个倒立的实像再放大成一个正立的像,如图五所示。
三、实验仪器1、带有毛玻璃的白炽灯光源S2、毫米尺F L=7mm3、二维调整架:SZ-074、物镜Lo:f o=225mm5、二维调整架:SZ-076、测微目镜Le:(去掉其物镜头的读数显微镜)7、读数显微镜架: SZ-388、滑座:TH709、滑座:TH70Y10、滑座:TH70Y11、滑座:TH7012、白屏:SZ-13四、仪器实物图及原理图图四五、实验步骤1、把全部器件按图四的顺序摆放在导轨上,毫米尺竖直放置,靠拢后目测调至共轴,把标尺放在毫米尺一侧。
2、把F和Le的间距调至最大,沿导轨前后移动Lo,使一只眼睛通过Le看到清晰的完整毫米尺上的刻线。
3、再用另一只眼睛看标尺,读出测微目镜看到的像在标尺上的尺寸。
六、数据处理毫米尺尺寸AB;像在标尺上的尺寸A"B"望远镜放大倍率M= A"B"/AB七、实验结果:1、数据:毫米尺尺寸AB=2mm;像在标尺上的尺寸A''B''=101cm所以,望远镜放大倍率M=A''B''/AB=10/2=5倍2、观察到的现象:八、遇到的问题及心得体会:1、开始实验时,由于各个仪器的间距摆放不合理,导致得不到想要的实验结果,最后看了实验册,重新摆放仪器;2、移动透镜的速度过快,使得我们看不到实验现象,也就没法组成望远镜,最后经过老师的指导,我们缓慢移动透镜;3、由于不知道会看到什么样的实验现象,以至于我们看到了微小的现象,以为不是我们想要的实验结果,再次导致没有做出来;4、最终在老师的一再指导下,我们终于自组成功望远镜,且通过观察我们得到规律:凸透镜成像规律:物距大于二倍焦距时成缩小实像。
实验二自组显微镜 (测量实验)一、实验目的了解显微镜的基本原理和结构,并掌握其调节、使用和测量它的放大率的一种方法。
二、实验原理物镜L o的焦距f o很短,将F1放在它前面距离略大于f o的位置,F1经L o后成一放大实像F’1,然后再用目镜L e作为放大镜观察这个中间像F’1,F’1应成像在L e的第一焦点F e之内,经过目镜后在明视距离处成一放大的虚像F’’1。
三、实验仪器1、带有毛玻璃的白炽灯光源S2、1/10mm分划板F13、二维调整架:SZ-074、物镜Lo:f o=15mm5、二维调整架:SZ-076、测微目镜Le(去掉其物镜头的读数显微镜)7、读数显微镜架: SZ-388、三维底座:SZ-019、一维底座:SZ-0310、一维底座:SZ-0311、通用底座:SZ-04四、仪器实物图及原理图图四(1)*S 毛玻璃Lo Le△Fo Fe180250F1图四(2)五、实验步骤1、把全部器件按图四的顺序摆放在平台上,靠拢后目测调至共轴。
2、把透镜Lo、Le的间距固定为180mm。
3、 沿标尺导轨前后移动F1(F1紧挨毛玻璃装置,使F1置于略大于f o 的位置),直至在显微镜系统中看清分划板F1的刻线。
六、数据处理显微镜的计算放大率:(250)/()o e M f f =⨯∆⨯其中:E O F F -=∆,见图示。
本实验中的fe=250/20(计算方法可参考光学书籍)七、实验结果1、数据:(250)/()o e M f f =⨯∆⨯ =|250*(-25)|/(15*250/20)=3.332、观察到的现象:八、遇到的问题及心得体会1、自组显微镜时,由于各个仪器的间距摆放不合理,导致得不到想要的实验结果,最后看了实验册,重新摆放仪器;2、移动透镜的速度过快,使得我们看不到实验现象,也就没法组成显微镜,最后经过老师的指导,我们缓慢移动透镜;3、由于不知道会看到什么样的实验现象,以至于我们看到了微小的现象,以为不是我们想要的实验结果,再次导致没有做出来;4、最终在老师的一再指导下,我们终于自组成功显微镜,且通过观察我们得到规律: 凸透镜成像规律:物体在一倍焦距以内,成放大正立的虚像;在一倍焦距以外二倍焦距以内成倒立放大放大的实像。
实验三偏振光分析 (测量实验)一、实验目的观察光的偏振现象,分析偏振光,起偏,定光轴二、实验原理(一)偏振光的基本概念光是电磁波,它的电矢量E和磁矢量H相互垂直,且均垂直于光的传播方向c,通常用电矢量E代表代表光的振动方向,并将电矢量E和光的传播方向c所构成的平面称为光振动面。
在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如附图1(a)。
光源发射的光是由大量原子或分子辐射构成的。
由于大量原子或分子的热运动和辐射的随机性,它们所发射的光的振动面,出现在各个方面的几率是相同的。
故这种光源发射的光对外不显现偏振的性质,称为自然光附图1(b)。
在发光过程中,有些光的振动面在某个特定方向上出现的几率大于其他方向,即在较长时间内电矢量在某一方向上较强,这种光称为部分偏振光,如图附图1(c)所示,还有一些光,其振动面的取向和电矢量的大小随时间作有规律的变化,而电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆。
这种光称为椭圆偏振光或圆偏振光。
附图1(a)附图1(b)附图1(c)(二)获得偏振光的常用方法将非偏振光变成偏振光的过程称为起偏,起偏的装置称为起偏器。
常用的起偏装置主要有:1、反射起偏器(或透射起偏器)当自然光在两种媒质的界面上反射和折射时,反射光和折射光都将成为部分偏振光。
当入射角达到某一特定值b ϕ时,反射光成为完全偏振光,其振动面垂直于入射面(见附图2)而角b ϕ就是布儒斯特角,也称为起偏振角,由布儒斯特定律得21/b tg n n ϕ=例如,当光由空气射向n=1.54的玻璃板时,b ϕ=57度若入射光以起偏振角b ϕ射到多层平行玻璃片上,经过多次反射最后透射出来的光也就接近于线偏振光,其振动面平行于入射面。
由多层玻璃片组成的这种透射起偏振器又称为玻璃片堆。
见附图3。
附图2附图3附图42、晶体起偏器利用某些晶体的双折射现象来获得线偏振光,如尼科尔棱镜等。
1、偏振片(分子型薄膜偏振片)聚乙烯醇胶膜内部含有刷状结构的炼状分子。
在胶膜被拉伸时,这些炼状分子被拉直并平行排列在拉伸方向上,拉伸过的胶膜只允许振动取向平行于分子排列方向(此方向称为偏振片的偏振轴)的光通过,利用它可获得线偏振光,其示意图参看图附图4。
偏振片是一种常用的“起偏”元件,用它可获得截面积较大的偏振光束(它就是本实验使用的元件)。
(三)偏振光的检测鉴别光的偏振状态的过程称为检偏,它所用的装置称为检偏器。
实际上,起偏器和检偏器是通用的。
用于起偏的偏振片称为起偏器,把它用于检偏就成为检偏器了。
按照马吕斯定律,强度为I 0的线偏振光通过检偏器后,透射光的强度为20cos I I θ=式中θ为入射光偏振方向与检偏器偏振轴之间的夹角。
显然,当以光线传播方向为轴转动检偏器时,透射光强度I 将发生周期性变化。
当θ=0度时,透射光强度最大;当θ=90度时,透射光强度最小(消失状态);当0度<θ<90度时,透射光强度介于最大值和最小之间。
因此,根据透射光强度变化的情况,可以区别光的不同偏振状态。
(四)偏振光通过波晶片时的情形1.波晶片波晶片是从单轴晶体中切割下来的平行平面板,其表面平行于光轴。
当一束单色平行自然光正入射到波晶片上时,光在晶体内部便分解为o 光与e 光。
o 光电矢量垂直于光轴;e 光电矢量平行于光轴。
而o 光和e 光的传播方向不变,仍都与表面垂直。
但o 光在晶体内的速度为0v ,e 光的为e v 即相应的折射率0n 、e n 不同。
设晶片的厚度为l ,则两束光通过晶体后就有位相差0()en n l πσλ=- 式中λ为光波在真空中的波长。
2k σπ=的晶片,2k σππ=+称为全波片;者为半波片(λ/2波片);22k πσπ=±为λ/4片,上面的k 都是任意整数。
不论全波片,半波片或λ/4片都是对一定波长而言。
以下直角坐标系的选择,是以e 光振动方向为横轴,o 光振动方向为纵轴。
沿任意方向振动的光,正入射到波晶片的表面,其振动便按此坐标系分解为e 分量和o 分量。
2.光束通过波片后偏振态的改变平行光垂直入射到波晶片后,分解为e 分量和o 分量,透过晶片,二者间产生一附加位相差σ。
离开晶片时合成光波的偏振性质,决定于σ及入射光的性质。
(1)偏振态不变的情形(i )自然光通过波晶片,仍为自然光。
因为自然光的两个正交分量之间的位相差是无规的,通过波晶片,引入一恒定的位相差σ,其结果还是无规的。
(ii )若入射光为线偏振光,其电矢量E 平行e 轴(或o 轴),则任何波长片对它都不起作用,出射光仍为原来的线偏振光。
因为这时只有一个分量,谈不上振动的合成与偏振态的改变。
除上述二情形外,偏振光通过波晶片,一般其偏振情况是要改变的。
(2)λ/2片与偏振光(i )若入射光为线偏振光,在λ/2片的前面(入射处)上分解为cos e e E A t ω=cos()o o E A t ωε=+ ε=0或π出射光表示为2cos()e e e E A t n l πωλ=-2cos()o o o E A t n l πωελ=+-讨论二波的相对位相差,上式可写为 cos e e E A t ω= 22cos()o o o e E A t n l n l ππωελλ=+-+=cos()o A t ωεσσπ+-=,出射光二正交分量的相对位相差由此决定。
现在0εσππ-=-=-和0εσππ-=-=这说明出射光也是线偏振光,但振动方向与入射光的不同。
如入射光与晶片光轴成θ角,则出射光与光轴成-θ角。
即线偏振光经λ/2片电矢量振动方向转过了2θ角。
(ii )若入射光为椭圆偏振光,作类似的分析可知,半波片既改变椭圆偏振光长(短)轴的取向,也改变椭圆偏振光(圆偏振光)的旋转方向。
(3)λ/4片与偏振光(i )入射光为线偏振光cos e e E A t ω=cos()o o E A t ωε=+ ε=0或π则出射光为cos e e E A t ω=cos()2o o E A t πωεσσ=+-=±,则出射光为cos cos()2e o E A tE A t ωπωεσσ==+-=±,此式代表一正椭圆偏振光。
2πεσ-=+对应于右旋,2πεσ-=-对应于左旋。
当e o A A =时,出射光为圆偏振光。
(ii )入射光为圆偏振光cos e E A t ω=cos()2o E A t πωεε=+=±, 此式代表线偏振光。