当前位置:文档之家› 物理电磁感应现象的两类情况的专项培优练习题

物理电磁感应现象的两类情况的专项培优练习题

物理电磁感应现象的两类情况的专项培优练习题一、电磁感应现象的两类情况1.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯=解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

(2)线圈中的电流大小。

(3)AB 边产生的焦耳热。

【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q = 【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯将22FRv B L =代入得 4FL Q =3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B垂直斜面向上为正)。

现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。

U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。

另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。

已知金属棒和U 形框与导轨间的动摩擦因数均为3μ=。

(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。

(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。

【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】(1)金属棒获得冲量I 后,速度为24m/s Iv m == 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为1E B lv =其中11B =T ;金属棒ab 两端的电势差为12120.1V ab B lvU R R R ==+(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为2212212B l v F m a R R ==+做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为21212B B l v F R R =+安其中21T B =;因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为11cos sin m f m g m g μαα==因此安培力的最大值为12sin m g θ; 可得最大冲量为()12122122sin 0.48m m g R R I B B l α+==N·s(3)当I =0.4N·s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得22212012B l vtm v m v R R -=-+ 其中0.32m vt x == 解得12m/s v =金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得()11122m v m m v =+因此碰撞后U 形框速度为20.5m/s v =同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为12de ab B lv B lvI R R -=+其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为()2212deab de abB B l vF B Il B Il R R -=-=+其中,,0.8cd ab B B kl k -== 由动量定理得()24122120k l vtm m v R R -=-++ 因此向下运动的距离为()()12212242m m m v R R s k l ++==此时cd 边的坐标为x =2.5m4.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。

有一根质量为m 、电阻为R 的金属棒MN 平行于ab 放置,让它以初速水平向右运动在到达最高点的过程中,ab 边产生的热量为Q 。

求:(1)金属棒MN 受到的最大安培力的大小; (2)金属棒MN 刚进入磁场时,ab 边的发热功率; (3)金属棒MN 上升的最大高度。

【答案】(1)220A 2B L v F R =;(2)22208ab B L v P R=;(3)2082mv Q h mg -=【解析】 【分析】 【详解】(1)金属棒MN 刚冲上斜面时,速度最大,所受安培力最大。

此时电路中总电阻为22222R RR R R R R⋅=+=+总最大安培力2200A 2BLvB L v F BIL B L R R===总由楞次定律知,MN 棒受到的安培力方向沿导轨向下。

(2)金属棒MN 刚进入磁场时,MN 棒中的电流02BLv E I R R==总 则024ab BLv I I R==,2ab ab ab P I R = 解得22208ab B L v P R=(3)当金属棒MN 上升到最大高度的过程中,ab 边、cd 边产生的热量相等,即cd ab Q Q Q ==ab 边产生的热量2·2Q I Rt =金属棒MN 产生的热量2(2)MN Q I Rt =得2MN Q Q =ab 边、cd 边及MN 棒上产生的总热量4Q Q =总由动能定理201402mgh Q mv --=-解得2082mv Q h mg-=5.如图甲所示,两根足够长的光滑平行直导轨固定在水平面上,导轨左侧连接一电容器,一金属棒垂直放在导轨上,且与导轨接触良好。

在整个装置中加上垂直于导轨平面的磁场,磁感应强度按图乙所示规律变化。

0~t 0内在导体棒上施加外力使导体棒静止不动,t 0时刻撤去外力。

已知电容器的电容为C ,两导轨间距为L ,导体棒到导轨左侧的距离为d ,导体棒的质量为m 。

求: (1)电容器带电量的最大值; (2)导体棒能够达到的最大速度v m 。

【答案】(1)00CB Ld Q t =;(2)22022()CB L dv t m CB L =+() 【解析】 【分析】 【详解】(1)电容器两极板的电压B U Ld t =电容器的带电量00CB t Q CU Ld== (2)电容器放电后剩余的电量Q CU ''=U BLv '=由动量定理得i BI L t mv ∑∆= Q Q I t '-=∆解得22022()CB L d v t m CB L =+()6.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。

一电阻值0.5ΩR =的细导体棒MN 垂直于导轨放置,并被固定在水平面上的两立柱挡住,导体棒MN 与导轨间的动摩擦因数0.2μ=,在M 、N 两端接有一理想电压表(图中未画出)。

在U 型导轨bc 边右侧存在垂直向下、大小B =0.5T 的匀强磁场(从上向下看);在两立柱左侧U 型金属导轨内存在方向水平向左,大小为B 的匀强磁场。

以U 型导轨bc 边初始位置为原点O 建立坐标x 轴。

t =0时,U 型导轨bc 边在外力F 作用下从静止开始运动时,测得电压与时间的关系如图2所示。

经过时间t 1=2s ,撤去外力F ,直至U 型导轨静止。

已知2s 内外力F 做功W =14.4J 。

不计其他电阻,导体棒MN 始终与导轨垂直,忽略导体棒MN 的重力。

求:(1)在2s 内外力F 随时间t 的变化规律;(2)在整个运动过程中,电路消耗的焦耳热Q ;(3)在整个运动过程中,U 型导轨bc 边速度与位置坐标x 的函数关系式。

【答案】(1)2 1.2F t =+;(2)12J ;(3)2v x =0≤x ≤4m );6.40.6v x =-324m m 3x ⎛⎫≤< ⎪⎝⎭;v =0(32m 3x ≥)【解析】 【分析】 【详解】(1)根据法拉第电磁感应定律可知:U BLv kt t ===得到:2U v t BL==根据速度与时间关系可知:22m/s a =对U 型金属导轨根据牛顿第二定律有:F IBL IBL ma μ--=带入数据整理可以得到:2 1.2F t =+(2)由功能关系,有f W Q W =+由于忽略导体棒MN 的重力,所以摩擦力为:A f F μ=则可以得到:fA Q WW μμ==则整理可以得到:(1)f W Q W Q μ=+=+得到:Q=12J(3)设从开始运动到撤去外力F 这段时间为12s t=,这段时间内做匀加速运动;①1t t …时,根据位移与速度关系可知:v ==1t t =时根据匀变速运动规律可知该时刻速度和位移为:14m/s v = 14m x =②1t t >时,物体做变速运动,由动量定理得到:1(1)BL q mv mv μ-+∆=-整理可以得到:2211(1)(1)(4)6.40.6BL q B L x v v v x m mRμμ+∆+-=-==--当323x m =时: 0v =综合上述,故bc 边速度与位置坐标x 的函数关系如下:v =0≤x≤4m )6.40.6v x =-324m m 3x ⎛⎫≤<⎪⎝⎭ 0v =(32m 3x ≥)7.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。

相关主题