当前位置:文档之家› 哈夫曼树编码译码实验报告(DOC)

哈夫曼树编码译码实验报告(DOC)

数据结构课程设计设计题目:哈夫曼树编码译码目录第一章需求分析 (1)第二章设计要求 (1)第三章概要设计 (2)(1)其主要流程图如图1-1所示。

(3)(2)设计包含的几个方面 (4)第四章详细设计 (4)(1)①哈夫曼树的存储结构描述为: (4)(2)哈弗曼编码 (5)(3)哈弗曼译码 (7)(4)主函数 (8)(5)显示部分源程序: (8)第五章调试结果 (10)第六章心得体会 (12)第七章参考文献 (12)附录: (12)在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。

哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。

哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。

这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。

哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。

树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。

哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。

第二章设计要求对输入的一串电文字符实现哈夫曼编码,再对哈夫曼编码生成的代码串进行译码,输出电文字符串。

通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。

电报通信是传递文字的二进制码形式的字符串。

但在信息传递时,总希望总长度能尽可能短,即采用最短码。

假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。

若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。

那么,∑WiLi 恰好为二叉树上带权路径长度。

因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵哈夫曼树,此构造过程称为哈夫曼编码。

设计实现的功能: (1) 哈夫曼树的建立; (2) 哈夫曼编码的生成; (3) 编码文件的译码。

哈夫曼编\译码器的主要功能是先建立哈夫曼树,然后利用建好的哈夫曼树生成哈夫曼编码后进行译码。

在数据通信中,经常需要将传送的文字转换成由二进制字符0、1组成的二进制串,称之为编码。

构造一棵哈夫曼树,规定哈夫曼树中的左分之代表0,右分支代表1,则从根节点到每个叶子节点所经过的路径分支组成的0和1的序列便为该节点对应字符的编码,称之为哈夫曼编码。

最简单的二进制编码方式是等长编码。

若采用不等长编码,让出现频率高的字符具有较短的编码,让出现频率低的字符具有较长的编码,这样可能缩短传送电文的总长度。

哈夫曼树课用于构造使电文的编码总长最短的编码方案。

(1)其主要流程图如图1-1所示。

(2)设计包含的几个方面:①哈夫曼树的建立哈夫曼树的建立由哈夫曼算法的定义可知,初始森林中共有n棵只含有根结点的二叉树。

算法的第二步是:将当前森林中的两棵根结点权值最小的二叉树,合并成一棵新的二叉树;每合并一次,森林中就减少一棵树,产生一个新结点。

显然要进行n-1次合并,所以共产生n-1个新结点,它们都是具有两个孩子的分支结点。

由此可知,最终求得的哈夫曼树中一共有2n-1个结点,其中n个结点是初始森林的n个孤立结点。

并且哈夫曼树中没有度数为1的分支结点。

我们可以利用一个大小为2n--1的一维数组来存储哈夫曼树中的结点。

②哈夫曼编码要求电文的哈夫曼编码,必须先定义哈夫曼编码类型,根据设计要求和实际需要定义的类型如下:typedet struct {char ch; // 存放编码的字符char bits[N+1]; // 存放编码位串int len; // 编码的长度}CodeNode; // 编码结构体类型③代码文件的译码译码的基本思想是:读文件中编码,并与原先生成的哈夫曼编码表比较,遇到相等时,即取出其对应的字符存入一个新串中。

第四章详细设计(1)①哈夫曼树的存储结构描述为:#define N 50 // 叶子结点数#define M 2*N-1 // 哈夫曼树中结点总数typedef struct {int weight; // 叶子结点的权值int lchild, rchild, parent; // 左右孩子及双亲指针}HTNode; // 树中结点类型typedef HTNode HuffmanTree[M+1];②哈弗曼树的算法void CreateHT(HTNode ht[],int n) //调用输入的数组ht[],和节点数n{int i,k,lnode,rnode;int min1,min2;for (i=0;i<2*n-1;i++)ht[i].parent=ht[i].lchild=ht[i].rchild=-1; //所有结点的相关域置初值-1 for (i=n;i<2*n-1;i++) //构造哈夫曼树{min1=min2=32767; //int的范围是-32768—32767lnode=rnode=-1; //lnode和rnode记录最小权值的两个结点位置for (k=0;k<=i-1;k++){if (ht[k].parent==-1) //只在尚未构造二叉树的结点中查找{if (ht[k].weight<min1) //若权值小于最小的左节点的权值{min2=min1;rnode=lnode;min1=ht[k].weight;lnode=k;}else if (ht[k].weight<min2){min2=ht[k].weight;rnode=k;}}}ht[lnode].parent=i;ht[rnode].parent=i; //两个最小节点的父节点是iht[i].weight=ht[lnode].weight+ht[rnode].weight; //两个最小节点的父节点权值为两个最小节点权值之和ht[i].lchild=lnode;ht[i].rchild=rnode; //父节点的左节点和右节点}}(2)哈弗曼编码void CreateHCode(HTNode ht[],HCode hcd[],int n){int i,f,c;HCode hc;for (i=0;i<n;i++) //根据哈夫曼树求哈夫曼编码{hc.start=n;c=i;f=ht[i].parent;while (f!=-1) //循序直到树根结点结束循环{if (ht[f].lchild==c) //处理左孩子结点hc.cd[hc.start--]='0';else //处理右孩子结点hc.cd[hc.start--]='1';c=f;f=ht[f].parent;}hc.start++; //start指向哈夫曼编码hc.cd[]中最开始字符hcd[i]=hc;}}void DispHCode(HTNode ht[],HCode hcd[],int n) //输出哈夫曼编码的列表{int i,k;printf(" 输出哈夫曼编码:\n");for (i=0;i<n;i++) //输出data中的所有数据,即A-Z {printf(" %c:\t",ht[i].data);for (k=hcd[i].start;k<=n;k++) //输出所有data中数据的编码{printf("%c",hcd[i].cd[k]);}printf("\n");}}void editHCode(HTNode ht[],HCode hcd[],int n) //编码函数{char string[MAXSIZE];int i,j,k;scanf("%s",string); //把要进行编码的字符串存入string数组中printf("\n输出编码结果:\n");for (i=0;string[i]!='#';i++) //#为终止标志{for (j=0;j<n;j++){if(string[i]==ht[j].data) //循环查找与输入字符相同的编号,相同的就输出这个字符的编码{for (k=hcd[j].start;k<=n;k++){printf("%c",hcd[j].cd[k]);}break; //输出完成后跳出当前for循环}}}}(3)哈弗曼译码void deHCode(HTNode ht[],HCode hcd[],int n) //译码函数{char code[MAXSIZE];int i,j,l,k,m,x;scanf("%s",code); //把要进行译码的字符串存入code数组中while(code[0]!='#')for (i=0;i<n;i++){m=0; //m为想同编码个数的计数器for (k=hcd[i].start,j=0;k<=n;k++,j++) //j为记录所存储这个字符的编码个数{if(code[j]==hcd[i].cd[k]) //当有相同编码时m值加1m++;}if(m==j) //当输入的字符串与所存储的编码字符串个数相等时则输出这个的data数据{printf("%c",ht[i].data);for(x=0;code[x-1]!='#';x++) //把已经使用过的code数组里的字符串删除{code[x]=code[x+j];}}}}(4)主函数void main(){int n=26,i;char orz,back,flag=1;char str[]={'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'}; //初始化int fnum[]={186,64,13,22,32,103,21,15,47,57,1,2,32,20,57,63,15,1,48,51,80,23,8,18,1,16}; //初始化HTNode ht[M]; //建立结构体HCode hcd[N]; //建立结构体for (i=0;i<n;i++) //把初始化的数据存入ht结构体中{ht[i].data=str[i];ht[i].weight=fnum[i];}while (flag) //菜单函数,当flag为0时跳出循环(5)显示部分源程序:{printf("\n");printf(" ********************************");printf("\n ** 1---------------显示编码**");printf("\n ** 2---------------进行编码**");printf("\n ** 3---------------进行译码**");printf("\n ** 4---------------退出**\n");printf(" * **********************************");printf("\n");printf(" 请输入选择的编号:");scanf("%c",&orz);switch(orz){case 'a':case 'A':system("cls"); //清屏函数CreateHT(ht,n);CreateHCode(ht,hcd,n);DispHCode(ht,hcd,n);printf("\n按任意键返回...");getch();system("cls");break;case 'b':case 'B':system("cls");printf("请输入要进行编码的字符串(以#结束):\n");editHCode(ht,hcd,n);printf("\n按任意键返回...");getch();system("cls");break;case 'c':case 'C':system("cls");DispHCode(ht,hcd,n);printf("请输入编码(以#结束):\n");deHCode(ht,hcd,n);printf("\n按任意键返回...");getch();system("cls");break;case 'd':case 'D':flag=0;break;default:system("cls");}}}第五章调试结果进入主菜单选A时的显示结果选择B时的显示结果选C时的显示结果第六章心得体会通过这次课程设计,让我对一个程序的数据结构有更全面更进一步的认识,根据不同的需求,采用不同的数据存储方式,不一定要用栈,二叉树等高级类型,有时用基本的一维数组,只要运用得当,也能达到相同的效果,甚至更佳,就如这次的课程设计,通过用for的多重循环,舍弃多余的循环,提高了程序的运行效率。

相关主题