随着单片机的使用日益频繁,用其作前置机进行采集和通信也常见于各种应用,一般是利用前置机采集各种终端数据后进行处理、存储,再主动或被动上报给管理站。
这种情况下下,采集会需要一个串口,上报又需要另一个串口,这就要求单片机具有双串口的功能,但我们知道一般的51系列只提供一个串口,那么另一个串口只能靠程序模拟。
本文所说的模拟串口,就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。
至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。
如波特率为9600BPS,即每一位传送时间为1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。
单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告诉你这个奇怪数字的来历。
用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?指令周期s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。
至于别的晶振频率大家自已去算吧。
现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。
方法一:延时法通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96个指令周期。
#define uchar unsigned charsbit P1_0 = 0x90;sbit P1_1 = 0x91;sbit P1_2 = 0x92;#define RXD P1_0#define TXD P1_1#define WRDYN 44 //写延时#define RDDYN 43 //读延时//往串口写一个字节void WByte(uchar input){uchar i=8;TXD=(bit)0; //发送启始位Delay2cp(39);//发送8位数据位while(i--){TXD=(bit)(input&0x01); //先传低位Delay2cp(36);input=input>>1;}//发送校验位(无)TXD=(bit)1; //发送结束位Delay2cp(46);}//从串口读一个字节uchar RByte(void){uchar Output=0;uchar i=8;uchar temp=RDDYN;//发送8位数据位Delay2cp(RDDYN*1.5); //此处注意,等过起始位while(i--){Output >>=1;if(RXD) Output |=0x80; //先收低位Delay2cp(35); //(96-26)/2,循环共占用26个指令周期}while(--temp) //在指定的时间内搜寻结束位。
{Delay2cp(1);if(RXD)break; //收到结束位便退出}return Output;}//延时程序*void Delay2cp(unsigned char i){while(--i); //刚好两个指令周期。
}此种方法在接收上存在一定的难度,主要是采样定位存在需较准确,另外还必须知道每条语句的指令周期数。
此法可能模拟若干个串口,实际中采用它的人也很多,但如果你用Keil C,本人不建议使用此种方法,上述程序在P89C52、AT89C52、W78E52三种单片机上实验通过。
方法二:计数法51的计数器在每指令周期加1,直到溢出,同时硬件置溢出标志位。
这样我们就可以通过预置初值的方法让机器每96个指令周期产生一次溢出,程序不断的查询溢出标志来决定是否发送或接收下一位。
//计数器初始化void S2INI(void){TMOD |=0x02; //计数器0,方式2TH0=0xA0; //预值为256-96=140,十六进制A0TL0=TH0;TR0=1; //开始计数TF0=0;}void WByte(uchar input){//发送启始位uchar i=8;TR0=1;TXD=(bit)0;WaitTF0();//发送8位数据位while(i--){TXD=(bit)(input&0x01); //先传低位WaitTF0();input=input>>1;}//发送校验位(无)//发送结束位TXD=(bit)1;WaitTF0();TR0=0;}//查询计数器溢出标志位void WaitTF0( void ){while(!TF0);TF0=0;}接收的程序,可以参考下一种方法,不再写出。
这种办法个人感觉不错,接收和发送都很准确,另外不需要计算每条语句的指令周期数。
方法三:中断法中断的方法和计数器的方法差不多,只是当计算器溢出时便产生一次中断,用户可以在中断程序中置标志,程序不断的查询该标志来决定是否发送或接收下一位,当然程序中需对中断进行初始化,同时编写中断程序。
本程序使用Timer0中断。
#define TM0_FLAG P1_2 //设传输标志位//计数器及中断初始化void S2INI(void){TMOD |=0x02; //计数器0,方式2TH0=0xA0; //预值为256-96=140,十六进制A0TL0=TH0;TR0=0; //在发送或接收才开始使用TF0=0;ET0=1; //允许定时器0中断EA=1; //中断允许总开关}//接收一个字符uchar RByte(){uchar Output=0;uchar i=8;TR0=1; //启动Timer0TL0=TH0;WaitTF0(); //等过起始位//发送8位数据位while(i--){Output >>=1;if(RXD) Output |=0x80; //先收低位WaitTF0(); //位间延时}while(!TM0_FLAG) if(RXD) break;TR0=0; //停止Timer0return Output;}//中断1处理程序void IntTimer0() interrupt 1{TM0_FLAG=1; //设置标志位。
}//查询传输标志位void WaitTF0( void )while(!TM0_FLAG);TM0_FLAG=0; //清标志位}中断法也是我推荐的方法,和计数法大同小异。
发送程序参考计数法,相信是件很容易的事。
另外还需注明的是本文所说的串口就是通常的三线制异步通信串口(UART),只用RXD、TX D、GND。
附:51 IO口模拟串口通讯C源程序(定时器计数法)#i ncludesbit BT_SND =P1^0;sbit BT_REC =P1^1;/**********************************************IO 口模拟232通讯程序使用两种方式的C程序占用定时器0**********************************************/#define MODE_QUICK#define F_TM F0#define TIMER0_ENABLE TL0=TH0; TR0=1;#define TIMER0_DISABLE TR0=0;sbit ACC0= ACC^0;sbit ACC1= ACC^1;sbit ACC2= ACC^2;sbit ACC3= ACC^3;sbit ACC4= ACC^4;sbit ACC5= ACC^5;sbit ACC6= ACC^6;sbit ACC7= ACC^7;void IntTimer0() interrupt 1{F_TM=1;}//发送一个字符void PSendChar(unsigned char inch){#ifdef MODE_QUICKACC=inch;F_TM=0;BT_SND=0; //start bit TIMER0_ENABLE; //启动while(!F_TM);BT_SND=ACC0; //先送出低位F_TM=0;while(!F_TM);BT_SND=ACC1;F_TM=0;while(!F_TM);BT_SND=ACC2;F_TM=0;while(!F_TM);BT_SND=ACC3;F_TM=0;while(!F_TM);BT_SND=ACC4;F_TM=0;while(!F_TM);BT_SND=ACC5;F_TM=0;while(!F_TM);BT_SND=ACC6;F_TM=0;while(!F_TM);BT_SND=ACC7;F_TM=0;while(!F_TM);BT_SND=1;F_TM=0;while(!F_TM);TIMER0_DISABLE; //停止timer #elseunsigned char ii;ii=0;F_TM=0;BT_SND=0; //start bit TIMER0_ENABLE; //启动while(!F_TM);while(ii<8){if(inch&1){BT_SND=1;}else{BT_SND=0;}F_TM=0;while(!F_TM);ii++;inch>>=1;}BT_SND=1;F_TM=0;while(!F_TM);#endifTIMER0_DISABLE; //停止timer }//接收一个字符unsigned char PGetChar() {#ifdef MODE_QUICKTIMER0_ENABLE;F_TM=0;while(!F_TM); //等过起始位ACC0=BT_REC;F_TM=0;while(!F_TM);ACC1=BT_REC;F_TM=0;while(!F_TM);ACC2=BT_REC;F_TM=0;while(!F_TM);ACC3=BT_REC;F_TM=0;while(!F_TM);ACC4=BT_REC;F_TM=0;while(!F_TM);ACC5=BT_REC;F_TM=0;while(!F_TM);ACC6=BT_REC;F_TM=0;while(!F_TM);ACC7=BT_REC;F_TM=0;while(!F_TM){if(BT_REC){break;}}TIMER0_DISABLE; //停止timer return ACC;#elseunsigned char rch,ii; TIMER0_ENABLE;ii=0;rch=0;while(!F_TM); //等过起始位while(ii<8){rch>>=1;if(BT_REC){rch|=0x80;}ii++;F_TM=0;while(!F_TM);}F_TM=0;while(!F_TM){if(BT_REC){break;}}TIMER0_DISABLE; //停止timerreturn rch;#endif}//检查是不是有起始位bit StartBitOn(){return (BT_REC==0);}void main(){unsigned char gch;TMOD=0x22; /*定时器1为工作模式2(8位自动重装),0为模式2(8位自动重装) */TR0=0; //在发送或接收才开始使用TF0=0;TH0=(256-96); //9600bps 就是 1000000/9600=104.167微秒执行的timer是//104.167*11.0592/12= 96TL0=TH0;ET0=1;EA=1;PSendChar(0x55);PSendChar(0xaa);PSendChar(0x00);PSendChar(0xff);while(1){if(StartBitOn()){gch=PGetChar();PSendChar(gch);}}}51单片机模拟串口的三种方法随着单片机的使用日益频繁,用其作前置机进行采集和通信也常见于各种应用,一般是利用前置机采集各种终端数据后进行处理、存储,再主动或被动上报给管理站。