高中物理电场和磁场 【方法归纳】 一、场强、电势的概念 1、电场强度E ①定义:放入电场中某点的电荷受的电场力F与它的电量q的比值叫做该点的电场强度。
②数学表达式:qFE/,单位:mV/ ③电场强度E是矢量,规定正电荷在电场中某点所受电场力的方向即为该点的电场强度的方向 ④场强的三个表达式 ⑤比较电场中两点的电场强度的大小的方法: 2、电势、电势差和电势能 二、电加速和电偏转 1、带电粒子在电场中的加速 在匀强电场中的加速问题 一般属于物体受恒力(重力一般不计)作用运动问题。处理的方法有两种: ①根据牛顿第二定律和运动学公式结合求解 ②根据动能定理与电场力做功,运动学公式结合求解 2、带电粒子在电场中的偏转 设极板间的电压为U,两极板间的距离为d,极板长度为L。 运动状态分析:带电粒子垂直于匀强电场的场强方向进入电场后,受到恒定的电场力作用,且与初速度方向垂直,因而做匀变速曲线运动——类似平抛运动如图1。 运动特点分析: 在垂直电场方向做匀速直线运动
0vvx tvx0 在平行电场方向,做初速度为零的匀加速直线运动
dmUqmEqa
atvy 22
1aty
通过电场区的时间:0vLt粒子通过电场区的侧移距离:2022mdvUqLy 粒子通过电场区偏转角:20mdvUqLtg 三、电容器的动态分析 解此类问题的关键是:先由电容定义式UQC、平行板电容器电容的大小C与板距d、正面积S、介
质的介电常数的关系式dSC和匀强电场的场强计算式dUE导出dSUCUQ,SdQCQU,
图1 v0 v y U,d θ SQCdQE等几个制约条件式备用。接着弄清三点:①电容器两极板是否与电源相连接?②哪个极板接
地?③C值通过什么途径改变?若电容器充电后脱离电源,则隐含“Q不改变”这个条件;若电容器始终接在电源上,则隐含“U不改变”(等于电源电动势)这个条件;若带正电极板接地,则该极板电势为零度,电场中任一点的电势均小于零且沿电场线方向逐渐降低;若带负电极板接地,则该极板电势为零,电场中任一点电势均大于零。 四、带电粒子在匀强磁场的运动 1、带电粒子在匀强磁场中运动规律 初速度的特点与运动规律
①00v 0洛f 为静止状态 ②Bv// 0洛f 则粒子做匀速直线运动
运动轨道半径公式:BqmvR;运动周期公式:BqmT2 2、解题思路及方法 圆运动的圆心的确定: ①利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心. ②利用圆上弦的中垂线必过圆心的特点找圆心
五、加速器问题 1、直线加速器 ①单级加速器:是利用电场加速,如图2所示。
粒子获得的能量:UqmvEk221 缺点是:粒子获得的能量与电压有关,而电压又不能太高,所以粒子的能量受到限制。 ②多级加速器:是利用两个金属筒缝间的电场加速。
粒子获得的能量:nUqmvEk221 缺点是:金属筒的长度一个比一个长,占用空间太大。 2、回旋加速器 采用了多次小电压加速的优点,巧妙地利用电场对粒子加速、利用磁场对粒子偏转,实验对粒子加速。 ①回旋加速器使粒子获得的最大能量:
在粒子的质量m、电量q,磁感应强度B、D型盒的半径R一定的条件下,由轨道半径可知,BqmvR,
即有,mBqRvmax,所以粒子的最大能量为
mRqBmvE2212222maxmax
图2 U ~ 由动能定理可知,maxEnUq,加速电压的高低只会影响带电粒子加速的总次数,并不影响引出时的最大速度和相应的最大能量。 ②回旋加速器能否无限制地给带电粒子加速? 回旋加速器不能无限制地给带电粒子加速,在粒子的能量很高时,它的速度越接近光速,根据爱因斯坦的狭义相对论,这里粒子的质量将随着速率的增加而显著增大,从而使粒子的回旋周期变大(频率变小)这样交变电场的周期难以与回旋周期一致,这样就破坏了加速器的工作条件,也就无法提高速率了。 七、粒子在交变电场中的往复运动 当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。 八、粒子在复合场中运动 1、在运动的各种方式中,最为熟悉的是以垂直电磁场的方向射入的带电粒子,它将在电磁场中做匀速直线运动,那么,初速v0的大小必为E/B,这就是速度选择器模型,关于这一模型,我们必须清楚,它只能选取择速度,而不能选取择带电的多少和带电的正负,这在历年高考中都是一个重要方面。 2、带电物体在复合场中的受力分析:带电物体在重力场、电场、磁场中运动时,其运动状态的改变由其受到的合力决定,因此,对运动物体进行受力分析时必须注意以下几点: ①受力分析的顺序:先场力(包括重力、电场力、磁场力)、后弹力、再摩擦力等。 ②重力、电场力与物体运动速度无关,由物体的质量决定重力大小,由电场强决定电场力大小;但洛仑兹力的大小与粒子速度有关,方向还与电荷的性质有关。所以必须充分注意到这一点才能正确分析其受力情况,从而正确确定物体运动情况。 3、带电物体在复合场的运动类型: ①匀速运动或静止状态:当带电物体所受的合外力为零时 ②匀速圆周运动:当带电物体所受的合外力充当向心力时 ③非匀变速曲线运动;当带电物体所受的合力变化且和速度不在一条直线上时 4、综合问题的处理方法 (1)处理力电综合题的的方法 ①用力的观点进解答,常用到正交分解的方法将力分解到两个垂直的方向上,分别应用牛顿第三定律列出运动方程,然后对研究对象的运动进分解。可将曲线运动转化为直线运动来处理,再运用运动学的特点与方法,然后根据相关条件找到联系方程进行求解。 ②用能量的观点处理问题 对于受变力作用的带电体的运动,必须借助于能量观点来处理。即使都是恒力作用的问题,用能量观点处理也常常显得简洁,具体方法有两种: (2)处理复合场用等效方法: 各种性质的场与实物(由分子和原子构成的物质)的根本区别之一是场具有叠加性。即几个场可以同时占据同一空间,从而形成叠加场,对于叠加场中的力学问题,可以根据力的独立作用原理分别研究每一种场力对物体的作用效果;也可以同时研究几种场力共同作用的效果,将叠加紧场等效为一个简单场,然后与重力场中的力学问题进行类比,利用力学的规律和方法进行分析与解答。 【典例分析】 【例1】如图5所示,AB是一个接地的很大的薄金属板,其右侧P点有带量为Q的正电荷,N为金属板外表面上的一点,P到金属板的垂直距离dPN,M为PN连线的中点,关于M、N两点的场强和电势,有如下说法: ①M点的电势比N点电势高,M点的场强比N点的场强大
·
A
B P M N · · +Q ②M点的场强大小为2/4dkQ ③N点的电势为零,场强不为零 ④N点的电势和场强都为零 上述说法中正确的是( ) A.①③ B.②④ C.①④ D.②③ 【例2】如图6所示,两根长为l的绝缘细线上端固定在O点,下端各悬挂质量为m的带电小球A、B,
A、B带电分别为q、q,今在水平向左的方向上加匀强电场,场强E,使连接AB长为l的绝缘细线拉直,并使两球处于静止状态,问,要使两小球处于这种状态,外加电场E的大小为多少?
【例3】如图7所示,是示波管工作原理示意图,电子经加速电压U1加速后垂直进入偏转电场,离开偏转电场时的偏转量为h,两平行板间的距离为d,电势差为U2,板长为l,为了提高示波管的灵敏度(单位偏转电压引起的偏转量)可采取哪些措施?
【例4】(2001年,安徽高考题)一平行板电容器,两板间的距离d和两板面积S都可调节,电容器两极板与电池相连接,以Q表示电容器的电量,E表示两极间的电场强度,则下列说法中正确的是( )
A.当d增大,S不变时,Q减小E减小 B.当S增大,d不变时,Q增大E增大 C.当d减小,S增大时,Q增大E增大 D.当S减小,d减小时,Q不变E不变 【例5】如图8所示,在S点的电量为q,质量为m的静止带电粒子,被加速电压为U,极板间距离为d的匀强电场加速后,从正中央垂直射入电压为U的匀强偏转电场,偏转极板长度和极板距离均为L,带电粒子离开偏转电场后即进入一个垂直纸面方向的匀强磁场,其磁感应强度为B。若不计重力影响,欲使带电粒子通过某路径返回S点,求:
图6 图7
E A B
O
l h d U2
U1
v0 (1)匀强磁场的宽度D至少为多少? (2)该带电粒子周期性运动的周期T是多少?偏转电压正负极多长时间变换一次方向?
【例6】N个长度逐个增大的金属筒和一个靶沿轴线排列成 一串,如图9 所示(图中只画出4个圆筒,作为示意),各筒和靶相间地连接到频率为f,最大电压值为U的正弦交流电源的两端,整个装置放在高度真空容器中,圆筒的两底面中心开有小孔,现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力作用而加速(设圆筒内部没有电场),缝隙的宽度很小,离子穿过缝隙的时间可以不计,已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U,为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子能量。
【例7】一水平放置的平行板电容器置于真空中,开始时两极板的匀电场的场强大小为E1,这时一带电粒子在电场的正中处于平衡状态。现将两极板间的场强大小由E1突然增大到E2,但保持原来的方向不变,持续一段时间后,突然将电场反向,而保持场强的大小E2不变,再持续一段同样时间后,带电粒子恰好回到最初的位置,已知在整个过程中,粒子并不与极板相碰,求场强E1的值。
【例8】如图10所示,在xOy平面内,有场强E=12N/C,方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、方向垂直xOy平面指向纸里的匀强磁场.一个质量m=4×10-5kg,电量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.求:(1)P点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.
图8 图 9
x y B E
• P O
L L U S d U
B
D