风力机叶片的设计
r = n R / (30U1) = 2403.141.4 30 7.8 =4,51
(4)计算各截面的周速比
0
=
r
×r0 R
=4.51× 80 1400
=0.26
1 =
r
× r1 R
=
4.51 170 1400
0.55
2
=r
r2 R
4.51
260 1400
0.84
3
=r
r3 R
4.51
350 1400
-0.009 -0.0111 -0.0145 -0.0188
-0.018 -0.017 -0.0154 -0.0128 -0.0104 -0.0081 -0.0043 -0.0019 -0.0026 -0.004 -0.0083 -0.0113 -0.0154 -0.0199 -0.0219 -0.0203 -0.0183 -0.0166 -0.0147 -0.0125 -0.011 -0.0093 -0.0075 -0.0063
3.16
11
r
r11 R
4.51 1070 1400
3.45
12
r
r12 R
4.51 1160 1400
3.74
13
r
r13 R
4.51 1250 1400
4.03
14
r
r14 R
4.51 1340 1400
4.32
15
r
r5 R
4.51
1400 1400
4.51
(5)、确定各个截面的安装角和弦长。
0.007 0.0074 0.0079 0.0084 0.0089 0.0093 0.0097
0.01 0.0103 0.0107
0.011 0.0114
0.012 0.0123 0.0127 0.0134 0.0137
Cl/Cd -30.917 -34.019
-35 -35.7263
-33.976 -31.9481 -32.5802 -29.3388 -24.1565 -21.6505 -17.0505 -12.6452 -10.4459
(2-1)
dFn
1 2
cV0
2
Cn
dr
1
2
dFt 2 cV0 Ct dr
其中 ——空气密度;c——叶素剖面弦长;;e、q——分别表示
法向力系数和切向力系数,即
(2-2)
Cn Cl cos Cd sin
Ct Clsin Cd cos
这时,作用在风轮平面 dr 圆环上的轴向力可表示为
dT
-4.7015 2.6154 17.9091 23.9571 30.9865 37.0506 43.869 49.2135 54.9892 60.5464
65.12 67.6893 69.3551
71.7 73.1491 73.1583
75.252 76.5039 75.8358 77.7372
Cm -0.0119 -0.0078 -0.0043 -0.0014 -0.0049
1 2
Bcv02Cn dr
(2-3)
式中 B--叶片数。
作用在风轮平面 dr 圆环上的转矩为
(2-4)
dM
1 2
02Ct rdr
(二)相关参数确定
•
(三)叶片的设计过程 (1)计算风轮直径。利用公式
D= 8Pu / CpU1312
=
8 500
1.2253.147.83 0.40.72
=2.8m 则风轮半径 R=1.4mm。
1)、确定翼型的设计升力系数和最佳攻角 2)、应用Glauert方法设计
1)、确定翼型的设计升力系数和最佳攻 角 根据Profili软件输入翼型型号NACA23012,可得到表3-1和图3-1、图3-2、图3-3及图3-4如下所示
Alfa -8
-7.5 -7
-6.5 -6
-5.5 -5
-4.5 -4
-3.5 -3
-2.5 -2
-1.5 -1 0
0.5 1
1.5 2
2.5 3
3.5 4
4.5 5
5.5 6
6.5 7
7.5 8
8.5
Cl -0.7451 -0.7144
-0.679 -0.6395 -0.5674
-0.492 -0.4268
-0.355 -0.2778
-0.223 -0.1688 -0.1176 -0.0773 -0.0315
(2)计算叶片长度。假设轮毂半径为 80mm,那么叶片长度 Lb 为
Lb =R- rhub =1400-80=1320mm
(3)等分叶片。把它分成 15 等份,则每等份为 88mm,取成整数后可以把前 14 个 截面段分为 90mm,这样,最后一个截面段为 60mm。
计算各截面周速比。首先计算出额定叶尖速比r
1.13
4
r
r4 R
4.51
440 1400
1.42
5
r
r5 R
4.51
530 1400
1.71
6
r
r6 R
4.51
620 1400
2.00
7
r
r7 R
4.51
710 1400
2.29
8
r
r8 R
4.51
800 1400
2.58
9
r
r9 R
4.51
890 1400
2.87
10
r
r10 R
4.51 980 1400
由表格可知 该翼型的最 佳攻角为9.5, 设计升力系 数为1.1583, 阻力系数为 0.0149,最大 升阻比为
0.017 0.1182 0.1677 0.2293 0.2927 0.3685
0.438 0.5114 0.5873 0.6512 0.6972 0.7421 0.7887 0.8339 0.8779 0.9256 0.9716 1.0162
1.065
Cd 0.0241
0.021 0.0194 0.0179 0.0167 0.0154 0.0131 0.0121 0.0115 0.0103 0.0099 0.0093 0.0074 0.0067 0.0065 0.0066
对每个叶素来说,其速度可以分解为垂直于风轮旋转平面的分量Vy0 和平行风轮旋转平面的分量Vy0 ,速度三角形和空气动力分量
如图 2-3 所示。图中:Φ角为入流角, 为迎角, 为叶片在叶素处的几何扭角。
合成气流速度 V0 引起的作用在长度为 dr 叶素上的空气动力 dFa 可以
分解为法向力 dFn 和切向力 dFt , dFa 和 dFt 可分别表示为
风电机组设计
第三组
(一) 设计理论 (二) 相关参数确定 (三) 叶片的设计过程 (四) 总结 (五) 主要参考文献
(一)设计理论
叶素理论
叶素理论的基本出发点是将风轮叶片沿展向分成许多微段,称这些微段为叶素。假设在每个叶素上的流动相互之间没有干 扰,即叶素可以看成是二维翼型,这时,将作用在每个叶素的力和力矩沿展向积分,就可以求得作用在风轮上的力和力矩。