当前位置:文档之家› 基于单片机的红外线遥控器设计

基于单片机的红外线遥控器设计

毕业设计姓名:专业:班级:指导教师:课程设计任务书姓名:钟思专业:自动化班级:1301班设计课题:基于单片机的红外线遥控器设计指导教师:电子信息工程系印制二○一五年十二月目录第一章红外发射部分 (1)1、设计要求与指标 (1)2、红外遥感发射系统的设计 (1)3、红外发射电路的设计 (2)4、调试结果及其分析 (3)第二章红外接受部分 (4)1、红外遥控系统的设计 (4)2、系统的功能实现方法 (9)3、红外接受电路图 (10)4、软件设计: (10)5、调试结果及分析: (10)6、结论: (11)参考文献 (11)第一章红外发射部分1.设计要求与指标红外遥控是目前使用较多的一种遥控手段。

功能强、成本低等特点。

系统。

设计要求利用红外传输控制指令及智能控制系统,借助微处理器强大灵活的控制功能发出脉冲编码,组成的一个遥控系统。

本设计的主要技术指标如下:(1) 遥控范围:0 —1 米(2) 显示可控制的通道(3) 灵敏可靠,抗干扰能力强(4) 控制用电器电流最高为2 A红外遥控的特点是不影响周边环境的、不干扰其他电器设备。

由于其无法穿透墙壁,故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰;多路遥控。

红外遥控系统由发射和接收两大部分组成,系统采用编/ 解码专用集成电路和单片机芯片来进行控制操作。

设计的电路由几个基本模块组成:直流稳压电源,红外发射电路,红外接收电路及控制部分。

发射电路,利用遥控发射利用键盘,这种代码指令信号调制在40KH z 的载波上,激励红外光二极管产生具有脉冲串的红外波,通过空间的传送到受控机的遥控接收器。

2.红外遥感发射系统的设计红外遥控系统由发射和接收两大部分组成,系统采用编/解码专用集成电路和单片机芯片来进行控制操作。

发射系统设计的电路由如下的几个基本模块组成:直流稳压电源,红外发射电路。

系统框图如图所示。

3.红外发射电路的设计3.1.摇控码的编码格式采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms 的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms 的组合二进制的“1”。

3.2遥控码的发射当某个操作按键按下时,单片机先读出键值,然后根据键值设定遥控码的脉冲个数,再调制成40kHz 方波由红外线发光管发射出去。

P3.5 端口的输出调制波如图2 - 2 所示。

图2-2单一按键波形图2-2连续按键波形3.3 红外发射电路图遥控发射通过键盘,每按下一个键,即产生具有不同的编码数字脉冲,这种代码指令信号调制在40KH z 的载波上,激励红外光二极管产生不同的脉冲,通过空间的传送到受控机的遥控接收器。

电路如下图所示。

4 调试结果及其分析(1) 电路要求遥控控制距离为0 —1m ,在利用38KHz 的接收头时,虽然能接收到信号,但是接收的距离很有限。

经过反复调试,换用40KHz 的接收头时基本满足了设计需求。

(2) 由于将3ms 的接收脉冲放在1ms 的后面,编码解调出现错误,导致接受端无信号输出。

解决方法是将3ms 的接收脉冲放在前面就可以接收到信号。

单片机进行数码帧的接收处理,3 ms 的脉冲检验,当第一位低电平码的脉宽小于2 ms时就会错误处理。

在初始化过程中,将P1 口全置0 ,但是继电器仍工作,通过反复调试,将初始化的P1口全置 1 ,通过反向使得输出全为0 ,从而满足上电复位,继电器掉电,满足初始化要求。

第二章红外接受部分1.红外遥控系统的设计红外遥控系统由发射和接收两大部分组成,系统采用编/ 解码专用集成电路和单片机芯片来进行控制操作。

设计的电路由如下的几个基本模块组成:红外发射电路,红外接收电路及控制部分。

1 .系统框图(如图3 -1 所示)2. XTAL2 接外部晶体的另一个引脚。

在单片机内部,它是上述振荡器的反相放大器的输出端。

采用外部振荡器时,此引脚应悬浮不连接。

3. 输入/ 输出引脚P0.0 ~P0.7 、P10. ~P 1 .7 、P2.0 ~P2.7 和P3.0 ~P3.7 。

①P0 端口(P0.0 ~P0.7 )P0 是一个8 位漏极开路型双向I/O 端口。

作为输出口用时,每位能以吸收电流的方式驱动8 个TTL 输入,对端口写 1 时,又可作高阻抗输入端用。

在访问外部程序和数据存储器时,它是分时多路转换的地址(低8位)/ 数据总线,在访问期间激活了内部的上拉电阻。

②P 1 端口(P 1 .0 ~P 1 .7 )P 1 是一个带有内部上拉电阻的8 位双向I/O 端口。

P 1 的输出缓冲器可驱动(吸收或输出电流方式)4 个TTL 输入。

对端口写1 时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。

因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

③P2 端口(P2.0 ~P2.7 )P2 是一个带有内部上拉电阻的8 位双向I/O 端口。

P2 的输出缓冲器可驱动(吸收或输出电流方式)4 个TTL 输入。

对端口写1 时,通过内部的上拉电阻把端口拉到高电位,P2 作输入口使用时,因为有内部的上拉电阻,这时可用作输入口。

P2作为输入口时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

在访问外部程序存储器和16 位地址的外部数据存储器( 如执行MOVX @ DPTR 指令)时,P2 送出高8 位地址。

在访问8 位地址的外部数据存储器( 如执行MOVX @ R i , A 指令)时,P2口引脚上的内容,在整个访问期间不会改变。

④P3 端口(P3.0 ~P3.7 )P3 是一个带有内部上拉电阻的8 位双向I/O 端口。

P2 的输出缓冲器可驱动( 吸收或输出电流方式)4 个TTL 输入。

对端输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

在AT89C52 中,P3 端口还用于一些专门功能,这些兼用功能如下:(1) P3.0 RXD (串行输入口)(2) P3.1 TXD (串行输出口)(3) P3.2 /INT0 (外部中断0 )(4) P3.3 /INT1 (外部中断1 )(5) P3.4 T0 (记时器0 外部输入)(6) P3.5 T1 (记时器1 外部输入)(7) P3.6 /WR (外部数据存储器写选通)(8) P3.7 /RD (外部数据存储器读选通)(9) P3 口同时为闪烁编程和编程校验接收一些控制信号4. 振荡器特性:XTAL1 和XTAL2 分别为反向放大器,该反向放大器可以配置为片内振荡器。

石英震荡和陶瓷震荡均可采用。

如采用外部时钟源驱动器件,XTAL2 应不接。

由于输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

5. 芯片擦除:整个PEROM 阵列和三个锁定位的电擦除可通过正确的控制信号组合,ALE 管脚处于低电平10ms 来完成。

在芯片擦操作中,代码阵列全被写“1 ”且在任何非空存储字节被重复编程以前,该操作必须被执行。

主控制器采用ATMEL公司的8位单片机AT89C52。

AT89C52是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable) 的可反复擦写1000 次的Flash只读程序存储器,器件采用ATMEL 公司的高密度、非易失性存储技术制造,兼容标准MCS -51指令系统。

图3-9:主控制器电路原理图2.系统的功能实现方法2.1摇控码的编码格式采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms 的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms 的组合二进制的“1”,其波形如图4所示。

图4 遥控码的“1”和“0”红外遥控发射芯片采用PPM 编码方式,当发射器按键按下后, 将周期性地发出同一种32位二进制码,周期约为108ms 的编码脉冲。

遥控编码脉冲由前导码、16 位地址码(8 位地址码、8 位地址码的反码)和16 位操作码(8 位操作码、8 位操作码的反码)组成。

通过对用户码的检验,每个遥控器只能控制一个设备动作,这样可以有效地防止多个设备之间的干扰。

编码后面还要有编码的反码,用来检验编码接收的正确性,防止误操作,增强系统的可靠性。

前导码是一个遥控码的起始部分,由一个9ms 的高电平( 起始码) 和一个 4. 5ms 的低电平( 结果码) 组成,作为接受数据的准备脉冲。

图5 发送一组完整的编码脉冲上述“0”和“1”组成的32位二进制码经38khz的载频进行二次调制以提高发射频率,然后再通过红外发射二极管产生红外线向空间发射。

2.2遥控码的发射当某个操作按键按下时,单片机先读出键值,然后根据键值设定遥控码的脉冲个数,再调制成40kHz 方波由红外线发光管发射出去。

P3.5 端口的输出调制波如图4 - 1 所示。

2.3数码帧的接收处理当红外线接收器输出脉冲帧数据时,第一位码的低电平将启动中断程序实时接收数据帧。

在数据帧接收时,将对第一位码的码宽进行验证。

若第一位低电平码的的脉宽小于2ms ,将作为错误码处理。

当间隔位的高电平脉宽大于3ms 时,结束接收,然后根据累加器 A 中的脉冲个数,执行相应输出口操作。

图4 -2 就是红外线接收器输出的一帧遥控码波形图。

3.红外接受电路图在接收过程中,脉冲通过光学滤波器和红外二极管转换为40KHZ的电信号,此信号经过放大,检波,整形,解调,送到解码与接口电路。

如图 5 - 1 所示。

通常,红外遥控器将遥控信号(二进制脉冲码) 调制在40KHz的载波上,经缓冲放大后送至红外发光二极管,产生红外信号发射出去。

将上述的遥控编码脉冲对频率为40 KHz( 周期为26.3ms) 的载波信号进行脉幅调制(PAM ) ,再经缓冲放大后送到红外发光管,将遥控信号发射出去。

4.软件设计:本系统的软件程序主要包括主程序、接收解码程序、发射程序、遥控器学习识别程序几个大的模块程序。

5.调试结果及分析:本电路总共设计了21个输入按键,其中11个为特殊按键,其他键均为数字键。

当输入一个按键0时,通过红外发射和接收电路,对应的继电器 1 的设备工作,液晶显示十六进制代码。

当按下按键 1 时,数码管显示不同的十六进制代码。

以此类推0—9号数字键功能同上,特殊按键,根据按的特殊按键的不同,会实现不同功能,如快进。

本设计在调试过程中也遇到很多问题。

1. 电路要求遥控控制距离为0 —1m ,在利用38KHz 的接收头时,虽然能接收到信号,但是接收的距离很有限。

经过反复调试,换用40KHz 的接收头时基本满足了设计需求。

在初始化过程中,将P1 口全置0 ,但是继电器仍工作,通过反复调试,将初始化的P1口全置 1 ,通过反向使得输出全为0 ,从而满足上电复位,继电器掉电,满足初始化要求。

相关主题