仪表串级控制 课件.ppt
• 当出口温度发生变化时,温度控制器不断改变着流量控制器 的设定值,流量控制器就按照测量值与变化了的设定值之差 进行控制,直到炉出口温度重新恢复到设定值 。
先副回路, 后主回路
情况二:干扰来自原料油方面,使炉出口温度升高
• 出口温度
温度控制器输出
流量控制器设定值 。
• 燃料油流量为适应温度控制的需要而不断变化。
二、串级控制系统的工作过程(参见P198)
仍以管式加热炉出口温度控制为例,分析温度-流量串级控 制系统克服干扰的过程。
调节阀:气开式 温度调节器、流量调节器:反作用
情况一:干扰来自燃料油流量的变化
• 初始阶段,出口温度不变,温度控制器的输出不变,流量控 制器就按照变化了的测量值与没变的设定值之差进行控制, 改变执行阀的原有开度,使燃料油向原来的设定值靠近。
第六章 串级控制系统设计
§6.1 串级控制原理 §6.2 串级控制系统的特点 §6.3 串级控制系统的设计 §6.4 串级控制系统的参数整定 §6.5 串级控制系统的工业应用
返回
§6.1 串级控制原理
一、串级控制系统的组成
例 :管式加热炉是炼油厂经常采用的设备之一(如下所示),
其工艺要求是:炉出口温度保持恒定。
串级控制系统中常见的名词术语:
主、副变量,主、副控制器(调节器),主、副对象,主、 副检测变送器,主、副回路。
作用在主、副对象上的干扰分别为一、二次干扰。
串级控制系统的通用方框图:
二次扰动 一次扰动
设定值
主调节器
副调节器
执行阀
副检测变送器
副 对象
主 对象
副参数
主参数Leabharlann 主检测变送器内回路选取时应包含主要干扰,同时时间常数不宜过长。
在这个方案中,炉出口温度不是被控量,当来自原料入 口温度和初始温度等干扰因素使出口温度发生变化时,此间 接控制系统无法将变化了的温度调回来;
管式加热炉出口温度的间接控制(2)
期望炉膛 温度
方案三:加热炉出口温度与燃料流量的串级控制
用温度控制器的输出作为流量控制器的设定值,由流量 控制器的输出去控制燃料油管线的控制阀,可以抑制燃料 油流量的扰动 同样:加热炉出口温度与炉膛温度的串级控制可以抑制燃料油
情况三:一次干扰和二次干扰同时存在
➢ 主、副变量同向变化 主、副调节器共同作用,执行阀的开度大幅度变化,使得
炉出口温度很快恢复到设定值。 ➢ 主、副变量反向变化
两种干扰作用相互抵消,或燃料油流量只作很小的调整。
通过分析可知:副控制器具有“粗调”的作用,而主控制 器具有“细调”的作用,两者互相配合,控制质量必然高于单回 路控制系统。
若克服二次干 用Y( 扰 1 S) 的 /X( 1能 S) 来 力表示 Y( 1 S) /F( 2 S)
则Y Y ( ( 1 1S S) ) //X F ( ( 2 1S S) ) W c1(S)W c2(S)Kc1Kc2 假设主、用 副比 调例 节 W 调 c器 1(S)节 均 K c1 , 器 W 采 c2(S, )K c2 即
流量的扰动和热值扰动。
温度-流量串级控制系统的方框图如下:
R(1 S) E(1 S) 温 度 调 R(2 S) E(2 S) 流 量 调
节器
节器
执行阀
D(2 S) D(1 S)
流量
流量
温度
对象
对象
原料出口温度
流量检测变送器
温度检测变送器
串级控制系统:就是由两个调节器串联在一起,控制一个执 行阀,实现定值控制的控制系统。
返回
§6.2 串级控制系统的特点
1、能迅速克服进入副回路的二次干扰 串级控制系统方框图如下:
X1(s) +
E1 (s)
Wc1 (s)
X 2 (s) +
-
E2 (s) Wc2 (s) + -
Z1(s)
Z2 (s)
F2 (s) +
WV (s)
W02 (s)
Y2 (s) +
F1 (s) +
W01 (s)
干扰:
原料的流量、初始温度; 燃料的流量、燃料热值。
方案一:管式加热炉出口温度的单回路控制
温度检测 变送器
期望 温度
存在的问题:
温度控 制器
由于原料、燃料的流量等扰动导致控制作用不及时; 偏差大,控制质量差。
方案二:管式加热炉出口温度的间接控制(1)
流量检测 变送器
期望 流量
存在的问题:
流量控 制器
Wm2 (s)
Y1 (s)
Wm1 (s)
输出对于输入的传递函数:
X Y ( ( 1 1 S S ) ) 1 W c 1 ( s ) W c 2 ( s ) W V W ( c s 1 ) ( W s ) 0 W ( c s 2 ) ( 2 W s ) 0 W ( V s ) ( W 1 s ) m W 1 ( 0 s ( ) s ) 2 W W 0 c 2 ( ( s s ) ) 1 W V ( s ) W 0 ( s ) 2 W m 2 ( s )
则: YY( (SS) ) //X F( ( 2 SS) ) Wc(S) K c 假设 W c(S: )Kc
一般 Kc2取值较 Kc1大 Kc,
单回路控制系统方框图如下:
X(S)
F(2 S) Wc (S)
WV (S)
F(1 S) W02(S)
Y(S) W01(S)
Wm (S )
Y (S) W c(s)W V(s)W 0(2 s)W 0(1 s) X (S) 1 W c(s)W V(s)W 0(2 s)W 0(1 s)W m (s) Y F ( ( 2S S ) ) 1 W c(s W )W VV (s ()s W )W 00 (2 s (2 )s W )W 00 (1 s (1 )s)W m (s)
X1(s) +
E1 (s)
Wc1 (s)
X 2 (s) +
-
E2 (s) Wc2 (s) + -
Z1(s)
Z2 (s)
F2 (s) +
WV (s)
W02 (s)
Y2 (s) +
F1 (s) +
W01 (s)
Wm2 (s)
Y1 (s)
Wm1 (s)
输出对于二次扰动的传递函数:
F Y ( ( 1 2 S S ) ) 1 W c 1 ( s ) W c 2 ( s ) W V ( s ) W 0 W ( V s ) ( 2 W s ) 0 W ( 0 s ) ( W 1 s ) m 2 W 1 ( 0 s ( ) s ) 1 W c 2 ( s ) W V ( s ) W 0 ( s ) 2 W m 2 ( s )