当前位置:文档之家› 水利水电工程毕业设计英文翻译,混凝土重力坝

水利水电工程毕业设计英文翻译,混凝土重力坝

Concrete Gravity DamThe type of dam selected for a site depends principally on topographic, geologic,hydrologic, and climatic conditions. Where more than one type can be built, alternative economic estimates are prepared and selection is based on economica considerations.Safety and performance are primary requirements, but construction time and materials often affect economic comparisons.Dam ClassificationDams are classified according to construction materials such as concrete or earth. Concrete dams are further classified as gravity, arch, buttress, or a combination of these. Earthfill dams are gravity dams built of either earth or rock materials, with particular provisions for spillways and seepage control.A concrete gravity dam depends on its own weight for structural stability. The dam may be straight or slightly curved, with the water load transmitted through the dam to the foundation material. Ordinarily, gravity dams have a base width of 0.7 to 0.9 the height of the dam. Solid rock provides the best foundation condition. However, many small concrete dams are built on previous or soft foundations and perform satisfactorily. A concrete gravity dam is well suited for use with an overflow spillway crest. Because of this advantage, it is often combined with an earthfill dam in wide flood plain sites.Arch dams are well suited to narrow V- or U-shaped canyons. Canyon walls must be of rock suitable for carrying the transmitted water load to the sides of the canyon by arch action. Arch sections carry the greatest part of the load; vertical elements carry sufficient load through cantilever action to produce cantilever deflections equal to arch deflections. Ordinarily, the crest length-to-height ratio should be less than 5, although greater ratios have been used. Generally, the base width of modern arch dams is 0.1 to 0.3 the height of the impounded water. A spillway may be designed into the crest of an arch dam.Multiple arches similarly transmit loads to the abutment or ends of the arch. This type of dam is suited to wider valleys. The main thrust and radial shears are transmitted to massive buttresses and then into the foundation material.Buttress dams include flat-slab, multiple-arch, roundhead-buttress, and multiple-dome types. The buttress dam adapts to all site locations. Downstream face slabs and aprons are used for overflow spillways similar to gravity dam spillways. Inclined sliding gates or light-weight low-head gates control the flow.The water loads are transmitted to the foundation by two systems of load-carrying members. The flat slabs, arches, or domes support the direct water load. The face slabs are supported by vertical buttresses. In most flat-slab buttress dams, steel reinforcement is used to carry thetension forces developed in the face slabs and buttress supports. Massive-head buttresses eliminate most tension forces and steel is not necessary.Combiantion designs may utilize one or more of the previously mentioned types of dams. For example, studies may indicate that an earthfill dam with a center concrete gravity overflow spillway section is the most economial in a wide, flat valley. Other design conditions may dictate a multiple-arch and buttress dam section or a buttress and gravity dam combination.Site ExplorationThe dam location is determined by the project’s functions. The exact site within the general location must be determined by careful project consideration and systematic studies.In preliminary studies, two primary factors must be determined-the topography at the site and characteristics of the foundation materials. The first choice of the type of dam is based primarily on these two factors. However, the final choice will usually be controlled by construction cost if other site factors are also considered.Asite exploration requires the preparation of an accurate topographic map for each possible site in the general location. The scale of the maps should be large enough for layout. Exploration primarily determines the conditions that make sites usable or unusable.From the site explorations, tentative sketches can be made of the dam location and project features such as power plants. Physical features at the site must be ascertained in order to make a sketch of the dam and determine the position of materials and work plant during construction. Other factors that may affect dam selection are roadways,fishways, locks, and log passages.TopographyTopography often determines the type of dam. For example, a narrow V-shaped channel may dictate an arch dam. The topography indicates surface characteristics of the valley and the relation of the contours to the various requirements of the structure. Soundness of the rock surface must be included in the topographic study.In a location study, one should select the best position for the dam. An accurate sketch of the dam and how it fits into the topographic features of the valley are often sufficient to permit initial cost estimates. The tentative location of the other dam features should be included in this sketch since items such as spillways can influence the type and location of the dam.Topographic maps can be made from aerial surveys and subsequent contour plotting or they can be obtained from governmental agencies. The topographic survey should be correlated with the site exploration to ensure accuracy. Topographic maps give only the surface profile at thesite. Further geological and foundation analyses are necessary for a final determination of dam feasibility.Foundation and Geological InvestigationFoundation and geological conditions determine the factors that support the weight of the dam. The foundation materials limit the type of dam to a great extent, although such limitations can be compensated for in design.Initial exploration may consist of a few core holes drilled along the tentatively selected site location. Their analysis in relation to the general geology of the area often rules out certain sites as unfeasible, particularly as dam height increases. Once the number of possible site locations has been narrowed down, more detailed geological investiagtions should be considered.The location of all faults, contacts, zones of permeability, fissures, and other underground conditions must be accurately defined. The probable required excavation depth at all points should be derived from the core drill analysis. Extensive drilling into rock formations isn’t necessary for small dams. However, as dam height and safety requirements increase, investigations should be increased in depth and number. If foundation materials are soft, extensive investigations should determine their depth,permeability, and bearing capacity. It is not always necessary orpossible to put a concrete dam on solid rock.The different foundations commonly encountered for dam construction are: (1)solid rock foundations, (2) gravel foundations, (3) silt or fine sand foundations, (4) clay foundations, and (5) nonuniform foundation materials. Small dams on soft foundation ( item 2 through item 5 ) present some additonal design problems such as settlement, prevention of piping, excessive percolation, and protection of foundation from downstream toe erosion. These conditions are above the normal design forces of a concrete dam on a rock foundation. The same problems also exist for earth dams.Geological formations can often be pictured in cross-section by a qualified geologist if he has certain core drill holes upon which to base his overall concept of the geology. However, the plans and specifications should not contain this overall geological concept. Only the logs of the core drill holes should be included for the contractor’s estimates. However, the geological picture of the underlying formations is a great aid in evaluating the dam safety. The appendix consists of excerpts from a geologic report for the site used in the design examples.HydrologyHydrology studies are necessary to estimate diversion requirements during construction, to establish frequency of use of emergency spillways in conjunction with outlets or spillways, to determine peak dischargeestimates for diversion dams, and to provide the basis for power generation. Hydrologic studies are complex; however, simplified procedures may be used for small dams if certain conservative estimates are made to ensure structural safety.Formulas are only a guide to preliminary plans and design computations. The empirical equations provide only peak discharge estimates. However, the designer is more interested in the runoff volume associated with discharge and the time distribution of the flow. With these data, the designer knows both the peak discharge and the total inflow into the reservoir area. This provides a basis for making reliable diversion estimates for irrigation projects, water supply, or power generation.A reliable study of hydrology enables the designer to select the proper spillway capacity to ensure safety. The importance of a safe spillway cannot be overemphasized. Insufficient spillways have caused failures of dams. Adequate spillway capacity is of paramount importance for earthfill and rockfill dams. Concrete dams may be able to withstand moderate overtopping.Spillways release excess water that cannot be retained in the storage space of the reservoir. In the preliminary site exploration, the designer must consider spillway size and location. Site conditions greatly influence the selection of location, type, and components of a spillway. The design flows that the spillway must carry without endangering the dam areequally important. Therefore, study of streamflow is just as critical as the foundation and geological studies of the site.附录2外文翻译混凝土重力坝一个坝址的坝型选择,主要取决于地形、地质、水文和气候条件。

相关主题