南京航空航天大学课程报告《人工智能及其航天应用》题目学生姓名学号学院专业班级教师二〇一三年十二月人工智能摘要:人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。
人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
关键词:发展历史及现状;应用;影响;0 引言人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。
也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。
这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
1 人工智能的发展历史与现状关于“人工智能”的起源,我们要追溯到公元前三百多年的历史伟人——古希腊伟大的哲学家、思想家 Aristotle(亚里士多德)(公元前 384-322),他的主要贡献是为形式逻辑奠定了基础。
形式逻辑是一切推理活动的最基本的出发点。
在他的代表作《工具论》中,就给出了形式逻辑的一些基本规律,如矛盾律、排中律,并且实际上已经提到了同一律和充足理由律。
此外,亚里士多得还研究了概念、判断问题,以及概念的分类和概念之间的关系,判断问题的分类和它们之间的关系。
其最著名的创造就是提出人人熟知的三段论。
亚里士多德虽没有明确提出“人工智能”的概念,但概念却在此悄悄的萌芽。
随后穿越到英国数学家 Turing(图灵)(1912-1954),1936 年提出了一种理想计算机的数学模型(图灵机),1950 年提出了图灵试验,发表了"计算机与智能"的论文。
当今世界上计算机科学最高荣誉奖励为"图灵奖"。
(图灵试验:当一个人与一个封闭房间里的人或者机器交谈时,如果他不能分辨自己问题的回答是计算机还是人给出时,则称该机器是具有智能的。
)以往该试验几乎是衡量机器人工智能的唯一标准,但是从九十年代开始,现代人工智能领域的科学家开始对此试验提出异议:反对封闭式的,机器完全自主的智能;提出与外界交流的,人机交互的智能。
虽然,图灵测试并未能真正说嘛计算机有了智能,到却推动了人们对“人工智能”定义的探索,对人工智能的研究内容和研究方法有了某种指导意义。
关于“人工智能”的发展历史,可以划分为一下的五个阶段:第一阶段: 50 年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s 求解程序LISP表处理语言等。
但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。
这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
第二阶段: 60 年代末到70 年代,专家系统出现,使人工智能研究出现新高潮DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。
并且,1969 年成立了国际人工智能联合会议(International Joint Conferences onArtificial Intelligence 即IJCAI)。
第三阶段: 80 年代,随着第五代计算机的研制,人工智能得到了很大发展日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统K I P S”,其目的是使逻辑推理达到数值运算那么快。
虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段: 80 年代末,神经网络飞速发展1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。
此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段: 90 年代,人工智能出现新的研究高潮由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。
不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。
另外,由于Hopfield 多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
人工智能已深入到社会生活的各个领域。
第六阶段:目前人工智能研究的3个热点是智能接口,数据挖掘,主体及多主体系统。
智能接口技术是研究如何使人们能够方便自然地和计算机交流。
为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。
因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。
目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但是又潜在有用的信息和知识的过程。
数据挖掘和知识发现的研究项目目前已经形成了三根强大的技术支柱数据库、人工智能和数理统计。
主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。
主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。
多主体系统系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。
多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及只能机械等领域。
目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协调和协作、通信和交互技术、多主体学习以及多主体系统应用等方面。
人工智能学科自1956 年诞生至今已走过50 多个年头, 就研究解释和模拟人类智能、智能行为及其规律这一总目标来说, 已经迈出了可喜的一步, 某些领域已取得了相当的进展。
但从整个发展的过程来看, 人工智能发展曲折, 而且还面临不少难题,主要有以下几个方面:计算机博弈的困难:博弈是自然界的一种普遍现象。
它表现在对自然界事物的对策或智力竞争上。
博弈不仅存在于下棋之中, 而且存在于政治、经济; 军事和生物的斗智和竞争之中。
尽管西洋跳棋和国际象棋的计算机程序已经达到了相当高的水平, 然而计算机博弈依然面临着巨大的困难。
这主要表现在以下两个方面的问题。
其一是组合爆炸问题, 状态空间法是人工智能中基本形式化方法。
若用博弈树来表示状态空间, 对于几种常见的棋类, 其状态空间都大得惊人, 例如, 西洋跳棋为10 的40 次方,国际象棋为10 的120 次方, 围棋则是10 的700 次方。
如此巨大的状态空间, 现有计算机是很难忍受的。
其二是现在的博弈程序往往是针对二人对弈, 棋局公开,有确定走步的一类棋类进行研制的。
而对于多人对弈, 随机性的博弈这类问题, 至少目前计算机还是难以模拟实现的。
机器翻译所面临的问题:在计算机诞生的初期, 有人提出了用计算机实现自动翻译的设想。
目前机器翻译所面临的问题仍然是1964 年语言学家黑列尔所说的构成句子的单词和歧义性问题。
歧义性问题一直是自然语言理解(NLU)中的一大难关。
同样一个句子在不同的场合使用, 其含义的差异是司空见惯的。
因此, 要消除歧义性就要对原文的每一个句子及其上下文, 寻找导致歧义的词和词组在上下文中的准确意义。
然而, 计算机却往往孤立地将句子作为理解单位。
另外, 即使对原文有了一定的理解, 理解的意义如何有效地在计算机里表示出来也存在问题。
目前的NLU 系统几乎不能随着时间的增长而增强理解力, 系统的理解大都局限于表层上, 没有深层的推敲, 没有学习, 没有记忆, 更没有归纳。
导致这种结果的原因是计算机本身结构的问题和研究方法的问题。
现在NLU 的研究方法很不成熟, 大多数研究局限在语言这一单独的领域, 而没有对人们是如何理解语言这个问题作深入有效的探讨。
自动定理证明和GPS 的局限:自动定理证明的代表性工作是1965 年鲁宾逊提出的归结原理。
归结原理虽然简单易行, 但它所采用的方法是演绎,而这种形式上的演绎与人类自然演绎推理方法是截然不同的。
基于归结原理演绎推理要求把逻辑公式转化为子句集合,从而丧失了其固有的逻辑蕴涵语义。
前面曾提到过的GPS 是企图实现一种不依赖于领域知识,求解人工智能问题的通用方法。
GPS 想摆脱对问题内部表达形式的依赖, 但是问题的内部表达形式的合理性是与领域知识密切相关的。
不管是用一阶谓词逻辑进行定理证明的归结原理, 还是求解人工智能问题的通用方法GPS, 都可以从中分析出表达能力的局限性, 而这种局限性使得它们缩小了其自身的应用范围。
模式识别的困惑:虽然使用计算机进行模式识别的研究与开发已取得大量成果,有的已成为产品投入实际应用, 但是它的理论和方法与人的感官识别机制是全然不同的。
人的识别手段形象思维能力, 是任何最先进的计算机识别系统望尘莫及的,另一方面, 在现实世界中, 生活并不是一项结构严密的任务一般家畜都能轻而易举地对付, 但机器不会, 这并不是说它们永远不会, 而是说目前不会。
”2 人工智能的应用领域与实例随着AI的技术的发展,现代几乎各种技术的发展都涉及到了人工智能技术,可以说人工智能已经广泛应用到许多领域,其典型的应用包括:符号计计算机最主要的用途之一就是科学计算,科学计算可分为两类:一类是纯数值的计算,例如求函数的值; 另一类是符号计算,又称代数运算,这是一种智能化的计算, 处理的是符号。
符号可以代表整数、有理数、实数和复数,也可以代表多项式,函数,集合等。
随着计算机的普及和人工智能的发展,相继出现了多种功能齐全的计算机代数系统软件, 其中Mathematic和Maple 是它们的代表,由于它们都是用C 语言写成的, 所以可以在绝大多数计算机上使用。