受力分析一、正交分解法:多力平衡问题宜采用正交分解法,采用正交分解法时,建立坐标系的原则是让尽可能多的力落在坐标轴上。
【例】倾角为θ的斜面上有质量为m 的木块,它们之间的动摩擦因数为μ.现用水平力F 推动木块,如图所示,使木块恰好沿斜面向上做匀速运动.若斜面始终保持静止,求水平推力F 的大小.二、图解法(“三角形”):三个共点力平衡问题宜采用“三角形法”,尤其是三个共点力的动态平衡动态平衡:物体受到几个变力的作用而处于平衡状态,我们把这类问题叫共点力的动态平衡.此类问题往往有这样的特点:(1)物体受三个力;(2)有一个力大小方向始终不变(一般是重力);(3)还有一个力的方向不变.我们可以采用图解法或者解析法(涉及到最小直的问题,还可以采用解析法,即采用数学求极值的方法求解求解.) 【例】如图所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m 的光滑均质球体,试求:β取何值时,夹板对球的弹力最小.相似三角形法:是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力的矢量三角形和结构三角形相似。
【例】图6-2所示,小圆环重G ,固定的竖直大环半径为R ,轻弹簧原长为L (L ﹤R )其倔强系数为K ,接触面光滑,求小环静止时弹簧与竖直方向的夹角θ?提示:可利用正弦定律求解或三角形相似法求解【例】如图6-3所示,一轻杆两端固结两个小物体A 、B ,m A =4m B 跨过滑轮连接A 和B 的轻绳长为L ,求平衡时OA 和OB 分别多长?往往在利用相似三角形解决三个共点力动态平衡时有这样的特点:(1)有一个力大小方向始终不变(一般是重力);(2)还有其他两个个力的方向都改变。
【例】如图所示,固定在水平面上的光滑半球,球心O 的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A 点,另一端绕过定滑轮,如图所示.今缓慢拉绳使小球从A 点滑向半球顶点(未到顶点),则此过程中,小球对半球的压力大小N 及细绳的拉力T 大小的变化情况是 ( )A.N 变大,T 变大B.N 变小,T 变大C.N 不变,T 变小D.N 变大,T 变小三、整体隔离法:主要用来解决连接体的平衡问题连接体的平衡问:当一个系统(两个及两个以上的物体)处于平衡状态时,系统内的每一个物体都处于平衡状态,当求系统内各部分相互作用时用隔离法(否则不能暴露物体间的相互作用),求系统受到的外力时,用整体法,即将整个系统作为一个研究对象,具体应用中,一般两种方法交替使用.【例】有一个直角支架AOB ,AO 水平放置,表面粗糙, OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力FN 和摩擦力f 的变化情况是 ( )A .FN 不变,f 变大B .FN 不变,f 变小C .FN 变大,f 变大D .FN 变大,f 变小 强化练习1.用一轻绳将小球P 系于光滑墙壁上的O 点,在墙壁和球P 之间夹有一矩形物块Q ,如图所示.P 、Q 均处于静止状态,则下列相关说法正确的是 A.P 物体受4个力 B.Q 受到3个力C.若绳子变长,绳子的拉力将变小D.若绳子变短,Q 受到的静摩擦力将增大2.如图2-3-20所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡状态时,质量为m1的小球与O 点的连线与水平线的夹角为α=60°.两小球的质量比12m m 为 ( )A.33B.32C.23D.223.如图所示,两球A 、B 用劲度系数为k1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点OA 之间的距离恰为L ,系统平衡时绳子所受的拉力为F1.现把A 、B 间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为A .F1 > F2B .F1 = F2C .F1 < F2D .无法确定4.如图(甲)所示的装置,OA 、OB 是两根轻绳,AB 是轻杆,它们构成一个正三角形,在AB 杆两端分别固定一个质量均为m 的小球,此装置悬挂在O 点,开始时装置自然下垂,现对小球B 施加一个水平力F ,使装置静止在图乙所示的位置,此时OA 竖直.设在图(甲)中OB 对小球B 的作用力大小为T ,在图(乙)中OB 对小球B 的作用力大小为T ’,则下列说法中正确的是( ) A .T ’=2T B .T ’>2T C .T ’<2T D .T ’=T5.绳中张力问题的求解重G 的均匀绳两端悬于水平天花板上的A 、B 两点。
静止时绳两端的切线方向与天花板成α角。
求绳的A 端所受拉力F 1和绳中点C 处的张力F 2。
6.如图所示,轻绳两端分别与A 、C 两物体相连接,m A =1kg ,m B =2kg ,m C =3kg ,物体A 、B 、C 及C 与地面间的动摩擦因数均为μ=0.1,轻绳与滑轮间的摩擦可忽略不计,若要用力将C 物体匀速拉动,则所需要加的拉力最小为(取g=10m/s2)( ) A .6N B .8N C .10N D .12N7.如图所示,物体m 在沿斜面向上的拉力F 1作用下沿斜面匀速下滑.此过程中斜面仍静止,斜面质量为M ,则水平地面对斜面体:[ ] A .无摩擦力 B .有水平向左的摩擦力 C .支持力为(M +m )gD .支持力小于(M+m )g8.如图所示,一质量为M 、倾角θ为的斜面体在水平地面上,质量为m 的小木块(可视为质点)放在斜面上,现用一平行于斜面的、大小恒定的拉力F 作用于小木块,拉力在斜面所在的平面内绕小木块旋转一周的过程中,斜面体和木块始终保持静止状态,下列说法中正确的是…()A B .小木块受到斜面的最大摩擦力为F-mgsin θ C .斜面体受到地面的最大摩擦力为F D .斜面体受到地面的最大摩擦力为Fcos θ(甲)(乙)ABB A CF①② ③④ FF F FAB9.两个倾角相同的滑杆上分别套A 、B 两圆环,两环上分别用细线悬吊着两物体C 、D ,如图14所示,当它们都沿滑杆向下滑动时,A 的悬线与杆垂直,B 的悬线竖直向下。
则( ) A .A 环与杆无摩擦力 B .B 环与杆无摩擦力 C .A 环做的是匀速运动 D .B 环做的是匀速运动10.(自锁现象)如图所示,三角形木块放在倾角为θ的斜面上,若木块与斜面间的摩擦系数θμtan >,则无论作用在木块上竖直向下的外力F 多大,木块都不会滑动,这种现象叫做“自锁”。
千斤顶的原理与之类似。
请证明之。
11.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以1l 、2l 、3l 、4l 依次表示四个弹簧的伸长量,则有 ( ) A .2l >1l B .4l >3l C .1l >3l D .2l =4l12.如图是主动轮P 通过皮带带动从动轮Q 的示意图,A 与B 、C 与D 分别是皮带与轮边沿相接触的一点,如果皮带不打滑,则下列判断错误的是:()A .A 与B 、C 与D 处于相对静止状态;B .B 点相对于A 点运动趋势的方向与B 点的运动方向相反;C .D 点相对于C 点运动趋势的方向与C 点的运动方向相反; D .主动轮受的摩擦力是阻力,从动轮受的摩擦力是动力。
13. 如图所示,质量为m 的物体放在水平放置的钢板C 上,与钢板的动摩擦因素为μ。
由于受到相对于地面静止的光滑导槽A 、B 的控制,物体只能沿水平导槽运动。
现使钢板以速度V 1向右匀速运动,同时用力F 拉动物体(方向沿导槽方向)使物体以速度V 2沿导槽匀速运动,求拉力F 大小。
14. 长直木板的上表面的一端放置一个铁块,木板放置在水平面上,将放置铁块的一端由水平位置缓慢地向上抬起,木板另一端相对水平面的位置保持不变,如图所示.铁块受到摩擦力f 木板倾角θ变化的图线可能正确的是(设最大静摩擦力的大小等于滑动摩擦力大小):()15. 如图所示,三角形ABC 三边中点分别为D 、E 、F ,在三角形中任取一点O ,如果OE 、OF 、DO 三个矢量化表三个力的大小及方向,那么这三个力的合力为( ) A .OA B .OB C .OC D .DO16. 如图所示,轻杆BC 一端用铰链固定于墙上,另一端有一小滑轮C ,重物系一绳经C 固定在墙上的A 点,滑轮与绳的质量及摩擦均不计 若将绳一端从A 点沿墙稍向上移,系统再次平衡后,则( )A .轻杆与竖直墙壁的夹角减小B .绳的拉力增大,轻杆受到的压力减小C .绳的拉力不变,轻杆受的压力减小D .绳的拉力不变,轻杆受的压力不变 注意“死节”和“活节”问题。
17. 如图所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体,平衡时,问: ①绳中的张力T 为多少?②A 点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力如何变化18. 如图所示,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点,OB 与竖直方向夹角为θ,悬挂物质量为m 。
①OA 、OB 、OC 三根绳子拉力的大小 。
Aπ6π20π2π6Bπ2π4Cπ2π4DAB Cm300②A 点向上移动少许,重新平衡后,绳中张力如何变化?19. 如图1-17(a )所示,将一根不可伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为1F ;将绳子一端由B 点移动C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为2F ;再将绳子一端由C 点移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子的张力为3F ,不计摩擦,则( ) A .1θ=2θ=3θ B .1θ<2θ<3θ C .1F >2F >3F D .1F =2F <3F “死杆”和“活杆”问题。
20. 如图37所示,质量为m 的物体用细绳OC 悬挂在支架上的C 点,轻杆BC 可绕B 点转动,求细绳AC 中张力T 大小和轻杆BC 受力N 大小。