当前位置:文档之家› 几种特殊的晶闸管

几种特殊的晶闸管

特殊的晶闸管双向晶闸管TRIAC:TRIode AC semiconductor switch双向可控硅为什么称为“TRIAC”?三端:TRIode(取前三个字母)交流半导体开关:ACsemiconductor switch(取前两个字母)以上两组名词组合成“TRIAC”中文译意“三端双向可控硅开关”。

由此可见“TRIAC”是双向可控硅的统称。

双向:Bi-directional(取第一个字母)控制:Controlled(取第一个字母)整流器:Rectifier(取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。

以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。

双向:Bi-directional(取第一个字母)三端:Triode(取第一个字母)由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅。

代表型号如:PHILIPS的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、等等。

这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。

而意法ST公司,则以“BT”字母为前缀来命名元件的型号并且在“BT”后加“A”或“B”来表示绝缘与非绝缘组合成:“BTA”、“BTB”系列的双向可控硅型号,如:三象限/绝缘型/双向可控硅:BTA06-600C、BTA12-600B、BTA16-600B、BTA41-600B等等;四象限/非绝缘/双向可控硅:BTB06-600C、BTB12-600B、BTB16-600B、BTB41-600B等等;ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。

如“BW”、“CW”、“SW”、“TW”;代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。

至于型号后缀字母的触发电流,各个厂家的代表含义如下:PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,型号没有后缀字母之触发电流,通常为25-35mA;PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。

意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA,注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明一般分为最小值/典型值/最大值,而非“=”一个参数值从外表上看,双向晶闸管和普通晶闸管很相似,也有三个电极。

但是,它除了其中一个电极G仍叫做控制极外,另外两个电极通常却不再叫做阳极和阴极,而统称为主电极Tl和T2。

它的符号也和普通晶闸管不同,是把两个晶闸管反接在一起画成的,如图2所示。

它的型号,在我国一般用“3CTS”或“KS”表示;国外的资料也有用“TRIAC”来表示的。

从内部结构来看,双向晶闸管是一种N—P—N—P—N型五层结构的半导体器件,见图3(a)。

为了便于说明问题,我们不妨把图3(a)看成是由左右两部分组合而成的,如图3(b)。

这样一来,原来的双向晶闸管就被分解成两个P—N—P—N型结构的单向晶闸管了。

如果把左边从下往上看的p1—N1—P2—N2部分叫做正向的话,那么右边从下往上看的N3—P1—N1—P2部分就成为反向,它们之间正好是一正一反地并联在一起。

我们把这种联接叫做反向并联。

因此,从电路功能上可以把它等效成图3(c),也就是说,一个双向晶闸管在电路中的作用是和两只普通晶闸管反向并联起来等效的。

这也正是双向晶闸管为什么会有双向控制导通特性的根本原因。

双向晶闸管不象普通晶闸管那样,必须在阳极和阴极之间加上正向电压,管子才能导通。

对双向晶闸管来说,无所谓阳极和阴极。

它的任何一个主电极,对图3(b)中的两个晶闸管管子来讲,对一个管子是阳极,对另一个管子就是阴极,反过来也一样。

因此,双向晶闸管无论主电极加上的是正向或是反向电压,它都能被触发导通。

不仅如此,双向晶闸管还有一个重要的特点,这就是:不管触发信号的极性如何,也就是不管所加的触发信号电压UG对T1是正向还是反向,双向晶闸管都能被触发导通。

双向晶闸管的这个特点是普通晶闸管所没有的。

快速晶闸管fast switching thyristor可以在 400Hz以上频率工作的晶闸管。

视电流容量大小,其开通时间为4~8微秒,关断时间为10~60微秒。

主要用于较高频率的整流、斩波、逆变和变频电路。

快速晶闸管是一个PNPN四层三端器件,其符号与普通晶闸管(见逆阻晶闸管)一样,它不仅要有良好的静态特性,尤其要有良好的动态特性。

快速晶闸管的动态参数要求为开通速度和导通扩展速度快,反向恢复电荷少,关断时间短,通态电流临界上升率(dI/dt)及断态电压临界上升率 (dV/dt)高。

通态电流临界上升率是在规定条件下,器件从断态转入通态时,对晶闸管不产生有害影响的最大通态电流上升率;断态电压临界上升率是在规定条件下,器件从断态不致转向通态的最大断态电压上升率。

快速晶闸管在额定频率内其额定电流不随频率的增加而下降或下降很少。

而普通晶闸管在 400Hz以上时,因开关损耗随频率的提高而增大,并且在总损耗中所占比重也增加,所以,其额定电流随频率增加而急速下降。

工作原理快速晶闸管的结构和工作原理与普通晶闸管相同,但在设计与制造中采取了特殊措施以减少开关耗散功率。

通常采用增加门极-阴极周界长度、减薄基区厚度的办法,增加初始导通面积,提高dI/dt耐量和提高扩展速度;采用阴极短路点、非对称结构、掺金、铂或用电子、快中子辐照技术等办法降低少子寿命,提高dV/dt耐量,降低关断时间。

80年代,快速晶闸管已做到通态平均电流1000A,耐压2500V,关断时间30微秒。

一种对工作频率有明确标定的快速晶闸管则称为高频晶闸管(中国型号为KG)。

例如KG50(20kHz),表示该高频管的标称工作频率为20kHz,通态平均电流为50A(20kHz下正弦半波平均电流值)。

80年代中期,中国已能生产KG100(20kHz)和KG200(10kHz),耐压为1~1.2kV的高频晶闸管。

快速晶闸管采取的特殊措施,在一定程度上降低了静态特性(如升高了通态压降),故限制了它直接工作于更高频率的大功率电子设备。

为满足更高频率下工作对晶闸管提出的特殊要求,开发了门极辅助关断晶闸管、可关断晶闸管等。

晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G 和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。

晶闸管的工作条件:1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于关短状态。

2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。

3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。

4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

从晶闸管的内部分析工作过程:晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP 型三极管和一个NPN型三极管的复合管图2当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。

图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。

因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。

设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:Ia=Ic1+Ic2+Ic0 或Ia=a1Ia+a2Ik+Ic0若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。

当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。

当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的发射结。

这样强烈的正反馈过程迅速进行。

从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。

晶闸管已处于正向导通状态。

式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。

晶闸管在导通后,门极已失去作用。

在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。

普通可控硅不能在较高的频率下工作。

因为器件的导通或关断需要一定时间,同时阳极电压上升速度太快时,会使元件误导通;阳极电流上升速度太快时,会烧毁元件。

人们在制造工艺和结构上采取了一些改进措施,做出了能适应于高频应用的可控硅,我们将它称为快速可控硅。

它具有以下几个特点。

一、关断时间(toff)短导通的可控硅,当切断正向电流时。

并不能马上“关断”,这时如立即加上正向电压,它还会继续导通。

从切断正向电流直到控制极恢复控制能力需要的时间,叫做关断时间。

用t0仟表示。

可控硅的关断过程,实际上是储存载流子的消失过程。

为了加速这种消失过程,制造快速可控硅时采用了掺金工艺,把金掺到硅中减少基区少数载流子的寿命。

硅中掺金量越多,t0仟越小,但掺金量过多会影响元件的其它性能。

二、导通速度快.能耐较高的电流上升率(dI/dt)控制极触发导通的可控硅。

总是在靠近控制极的阴极区域首先导通,然后逐渐向外扩展,直到整个面积导通。

大面积的可控硅需要50~100微秒以上才能全面积导通。

相关主题