当前位置:文档之家› 生物湿法冶金的应用与发展

生物湿法冶金的应用与发展

生物湿法冶金的应用与发展摘要:随着资源的贫化、不易处理,生产经济成本以及对环境的影响,生物湿法冶金作为一种新型的冶金工艺已取得了长足的发展,并不断地在其产业化方面取得愈来愈多的成就。

本文主要阐述了生物湿法冶金的发展历史、浸出机理、生产应用、并分析了生物湿法冶金的优势与缺陷和生物湿法冶金未来发展趋势。

关键词:微生物浸出Abstract:With the resources, difficult to deal with it, the production cost and economic impact on the environment, biological hydrometallurgy as a new type of metallurgy process has made great progress, and continuously in the industrialization has more and more achievements. This article mainly expounds the biological hydrometallurgy development history, leaching mechanism, the production application, and analyzes the biological hydrometallurgy advantages and disadvantages and biological hydrometallurgy future development tendency.Keywords:microbial leaching生物湿法冶金是微生物学与湿法冶金学的交叉学科,是利用某些微生物或其代谢产物对某些矿物(主要为硫化矿物)和元素所具有的氧化、还原、溶解、吸收等作用,从矿石中将有价元素选择性浸出,制备高纯金属及其材料的新技术。

在世界矿产资源日渐贫瘠以及环境污染加剧的今天,传统的选矿技术(重选、磁选、电选、浮选)与理论已不能完全解决这些问题。

人类社会生活的发展要求矿物加工科技发展的目标是实现矿物加工过程的“高效益、低能耗、无污染”。

由此产生了生物选矿技术。

1、生物湿法冶金简介【1】微生物湿法冶金技术是一门新兴的矿物加工技术,它包括微生物浸出技术和微生物浮选技术。

又根据微生物在回收金属过程中所起作用,可将微生物湿法冶金分为三类:生物吸附、生物累积、生物浸出。

生物吸附是指溶液中的金属离子,依靠物理化学作用,被结合在细胞膜或细胞壁上。

组成细胞壁的多种化学物质常具有如下功能基:胺基、酰基、羟基、羧基、磷酸基和巯基。

这些基团的存在,构成了金属离子被细胞壁结合的物质基础。

生物累积是依靠生物体的新陈代谢作用而在体内累积金属离子。

例如巴伦支海的藻类细胞含金量是海水中金浓度的2×1014倍。

铜绿假单胞菌能累积铀,荧光假单胞菌和大肠杆菌能累积钇。

生物浸出就是利用微生物自身的氧化或还原特性,使矿物的某些组分氧化或还原,进而使有用组分以可溶态或沉淀的形式与原物质分离的过程,此即生物浸出过程的直接作用;或者是靠微生物的代谢产物(有机酸、无机酸及Fe3+)与矿物进行反应,而得到有用组分的过程,此即浸出过程中微生物的间接作用。

2、生物湿法冶金的历史【2】生物湿法冶金始于20世纪50年代,并经历了三个发展时期,即诞生期、摇篮期、觉醒期。

诞生期(1947-1955):1947年 ,美国Colmer和 Hinkle从矿山酸性坑水中分离鉴定出氧化亚铁硫杆菌,并证实了微生物在浸出矿石中的生物化学作用。

之后几年,生物湿法冶金成功地在回收铜、铀、金3种金属的冶金工艺上获得了应用。

摇篮期(1955-1985):1958年美国用细菌在铜矿中浸出了金属铜,1966年加拿大在细菌浸出铀的研究和工业应用获得成功,使得应用微生物技术在低品位金属矿、难浸金矿、矿冶废料及其处理等方面的应用呈现较好的前景,基本实现了铜矿、铀矿、金矿等一系列矿种的微生物浸出生产。

而且继铜、铀、金的微生物湿法提取实现工业化生产之后 ,钴、锌、镍、锰的微生物湿法提取也正由实验室研究向工业化生产过渡。

在这一时期,先后有包括南非、加拿大、美国、英国中国在内30多个国家开展了微生物在矿冶工程中的应用研究工作。

我国微生物浸矿技术方面的研究是从 20 世纪 60 年代末开始的,已先后在铀、铜等金属的生产应用中取得成功。

20 世纪70年代初,在湖南711铀矿进行了处理量为700 t贫铀矿石的细菌堆浸扩大试验。

同一时期,核工业北京化工冶金研究院在抚州铀矿厂进行半工业细菌堆浸试验回收铀1 142. 14kg。

觉醒期(1985-现在):到80年代,对难浸出矿石进行细菌预氧化的工业实践大大推进了微生物技术在矿石冶金的应用。

加拿大、俄罗斯、印度等国,广泛使用细菌法溶浸铀矿。

生物湿法冶金可以节约经济。

从低品位铀矿石(0.01%-0.05%U3O8)中回收铀,而其成本仅为其它回收方法的一半;生物湿法冶金也可以节约时间,提高浸出率。

用细菌法溶浸镍矿石,只需5-15天,可浸出镍80%-90%,而无菌溶镍的提取率仅为9.5%-12%。

另外,在微生物湿法冶金领域,大量的现代生物技术相继被引入与应用,如采用免疫荧光标记技术可以进行活体检测菌体对矿石的吸附过程,用蛋白质定量分析方法来确定菌体对矿石的吸附量等。

3、生物湿法冶金的浸出机理【3~5】在大多数金属硫化物,如黄铜矿、辉铜矿、黄铁矿、闪锌矿等以及某些氧化矿诸如铀矿、MnO2等难溶于稀硫酸等一般工业浸出剂加入某些特殊微生物,在合适条件下上述矿物中的金属便能被稀硫酸浸出。

这些微生物可以分为两大类。

一类能在无有机物的条件下存活,叫“自养微生物”。

另一类生长时需要某些有机物作为营养物质,叫“异氧微生物”【6】。

这些微生物是单细胞微生物,繁殖是以自身细胞分裂形式来进行的,即一分为二、二分为四……,以2n(n为分裂次数)的形式增加。

已报道用于浸矿的细菌有20多种,比较重要的有以下六种:①氧化铁硫杆菌;②氧化硫硫杆菌;③氧化铁铁杆菌;④微螺球菌属;⑤硫化芽孢杆菌属;⑥高温嗜酸古细菌。

用于采矿的细菌都有一个共同的特征,都是宽约5×10-7 m、长约1×10-6-2×10-6m,它们生长在普通微生物所不能生存的强酸性坑内水中,摄取空气中的二氧化碳、氧和水中的其它微量元素,用以合成细胞组织,并在促进矿石中硫、铁等成分的氧化作用的同时。

获得新陈代谢的能量,自养自生。

在没有细菌存在的情况下,绝大部分金属矿物的自然溶解速率很慢,以至必须采用化学溶剂浸出它们(例如酸浸、氨浸出铜、氰化物浸出金等)。

可是在微生物的作用下,矿物的溶解速率大大提高,可以达到自然溶解的105-106倍【7】。

在溶液浸出时,细菌的作用可以概括为两个方面:(1)在各种微生物固紧器、菌毛或矿物表面的粘着力作用下,细菌附着在硫化矿物表面的硫相区域,结果两者发生化学和生物化学反应,使金属转换成可溶性的硫酸盐;(2)附着的和未附着的细菌生物酶作为催化剂,加快化学或生物化学反应的速度。

硫化矿物的生物氧化过程可用下列化学反应方程来表示:式中:M代表二价金属。

微生物浸出金属的方式有两种:(1)在微生物的新陈代谢作用下,直接将不溶性的硫化矿物氧化成可溶性的金属硫酸盐;(2)由微生物新陈代谢的产品——二价铁离子间接氧化不溶性矿物。

在学术界,目前对氧化机理解释主要有两种。

一种是直接间接作用原理【8~10】,另一种是初级次级反应机理。

下面仅介绍直接间接作用原理。

3.1直接作用机制它就是细菌直接吸附在硫化物矿物表面,作用机理可以用细菌氧化硫化物来解释。

通常可以用如下化学反应式来表达:上述反应是通过细菌细胞内特有的铁氧化酶和硫氧化酶直接氧化金属硫化物,使金属溶解出来。

试验结果表明,在细菌参与下,对黄铜矿、含钴毒砂、金、锡、铜精矿、黄铁矿等的浸出才有明显效果。

3.2间接作用机制它主要是利用氧化亚铁硫杆菌的代谢产物——硫酸高铁和硫酸与金属硫化物起氧化还原作用。

硫酸高铁被还原成硫酸亚铁并生成元素硫,金属以硫酸盐形式溶解出来。

而亚铁又被细菌氧化成高铁元素,硫被氧化成硫酸浸出矿物,构成一个氧化还原的浸矿循环系统,其反应如下:人们认为细菌对铀、氧化铜矿、铜的简单硫化物(辉铜矿、铜蓝等)的浸出,都是间接作用的结果,反应如下:事实上细菌的氧化反应并非上面描述的那么简单,它牵涉到各种各样因素的影响。

以上反应式所表示的仅仅是某种矿物在细菌的“催化”作用下得到某些产物的结果描述。

中间过程究竟如何,是一个十分复杂的问题。

其中一些过程较简单,易于理解,而另外一些过程还很难解释。

另外,在浸出时,细菌的直接作用和间接作用是同时发生的,两者均有助于金属的溶解,有时很难区分它们。

总之,目前对微生物氧化矿物机制的解释尚不满意。

困难之一在于矿物、菌种及其中间产物都十分复杂,而现今的检测手段又无法定量。

尽管如此上述原理对于指导实践仍很有帮助。

4、生物湿法冶金的应用4.1硫化矿的生物浸出硫化矿的生物浸出是一个复杂的过程,化学氧化、生物氧化与原电池反应同时发生,主要是利用以硫化矿作为能源基质的微生物将矿物溶浸的绿色冶金过程,即利用氧化铁硫杆菌和喜温性微生物,从纯硫化物或复杂的多金属硫化物中将重金属有效地溶解出来【11】。

在各类硫化矿浸出中,最具代表性的便是铜的生物浸出。

早在16和17世纪,就有人利用氧化铁硫杆菌的作用使铜溶解到水溶液中这一现象,成功地将其应用于铜的生产。

但有意识地和有选择性地堆浸黄铜矿中的铜的方法却于19世纪之后才在西班牙发展起来并不断改进。

对于象铜这样的金属,其生物浸出是与大规模的废石堆浸与堆浸及原地浸出紧密联系在一起的。

铜矿山产出的大量废石以及等外矿,含铜极低,用常规方法处理在经济上是非常不合算的。

但这些等外矿与废石量极大,含铜量可观【12】,于是从这些矿石、废石中提铜的唯一经济的方法是大规模的堆浸、废石堆浸和原位浸出。

特别是对于一些交通不便的边远地区的小型铜矿,矿石外运困难,按常规方法冶炼基建投资大。

对环节污染严重,细菌浸出,甚至用槽浸也是一种简捷有效的途径。

铜的生物氧化提取属于原生矿物细菌氧化工艺,其成套工艺主要采用生物堆浸浸出-萃取-电积方法,所得产品为阴极铜,纯度可达99.99%以上。

世界上第一座铜的生物堆浸厂于20世纪60年代初期在美国的Kennecott 铜业公司建成投产。

1958年在西班牙用细菌产生的硫酸高铁溶浸低品位铜矿石,成功地回收了铜。

1980年Lo Aguirre 铜矿实现了生物堆浸的商业化应用,标志着生物浸铜技术实现大规模工业生产。

20世纪80年代以来,世界上共有14座铜的生物氧化提取厂投入生产。

相关主题