信息安全数学基础第一阶段知识总结第一章 整数的可除性一 整除的概念和欧几里得除法 1 整除的概念定义1 设a 、b 是两个整数,其中b ≠0如果存在一个整数 q 使得等式 a=bq 成立,就称b 整除a 或者a 被b 整除,记作b|a ,并把b 叫作a 的因数,把a 叫作b 的倍数.这时,q 也是a 的因数,我们常常将q 写成a /b 或否则,就称b 不能整除a 或者a 不能被b 整除,记作a b.2整除的基本性质(1)当b 遍历整数a 的所有因数时,-b 也遍历整数a 的所有因数. (2)当b 遍历整数a 的所有因数时,a/b 也遍历整数a 的所有因数. (3)设b ,c 都是非零整数, (i)若b|a ,则|b|||a|. (ii)若b|a ,则bc|ac.(iii)若b|a ,则1<|b|≢|a|. 3整除的相关定理(1) 设a ,b ≠0,c ≠0是三个整数.若c|b ,b|a ,则c|a. (2) 设a ,b ,c ≠0是三个整数,若c|a ,c|b ,则c|a ±b(3) 设a ,b ,c 是三个整数.若c|a ,c|b 则对任意整数s ,t ,有c|sa+tb. (4) 若整数a 1 , …,a n 都是整数c ≠0的倍数,则对任意n 个整数s 1,…,s n ,整数 是c 的倍数ab n n as a s ++ 11(5) 设a,b都是非零整数.若a|b,b|a,则a=±b(6) 设a, b , c是三个整数,且b≠0,c ≠0,如果(a , c)=1,则(ab , c)=(b , c)(7) 设a , b , c是三个整数,且c≠0,如果c|ab , (a , c) = 1, 则c | b.(8) 设p 是素数,若p |ab , 则p |a或p|b(9) 设a1, …,a n是n个整数,p是素数,若p| a1…a n,则p一定整除某一个a k二整数的表示主要掌握二进制、十进制、十六进制等的相互转化.三最大公因数和最小公倍数(一)最大公因数1.最大公因数的概念定义:设是个整数,若使得,则称为的一个因数.公因数中最大的一个称为的最大公因数.记作.若 ,则称互素.若,则称两两互素.思考:1.由两两互素,能否导出2.由能否导出两两互素?2.最大公因数的存在性(1)若不全为零,则最大公因数存在并且(2)若全为零,则任何整数都是它的公因数.这时,它们没有最大公因数.3.求两个正整数的最大公因数.定理1:设任意三个不全为零的整数,且则辗转相除法由带余除法得(1)……因为每进行一次带余除法,余数至少减少1,且是有限整数,故经过有限次带余除法后,总可以得到一个余数是零的情况,即由(1)知,定理2:任意两个正整数,则是(1)中最后一个不等于零的余数.定理3:任意两个正整数的任意公因数都是的因数.4.性质定理4:任意两个正整数,则存在整数,使得成立定理5:设是不全为零的整数.(i)若则(ii)若则(iii)若是任意整数,则从上面定理我们很容易得到下面几个常用结论:①② 且③④5.求两个以上正整数的最大公因数设则有下面的定理:定理6:若是个正整数,则只需证①是的一个公因数.②是的公因数中最大一个例求解:6.求两个正整数的最大公因数的线性组合(重点掌握)方法一运用辗转相除法求最大公因数的逆过程;方法二补充的方法方法三运用列表法求解(二) 最小公倍数1.最小公倍数的定义定义:是个整数,如果对于整数,有,那么叫做的一个公倍数.在的一切公倍数中最小一个正整数,叫做最小公倍数.记作.2.最小公倍数的性质.定理1:设是任给的两个正整数,则(i)的所有公倍数都是的倍数.(ii)定理2:设正整数是的一个公倍数,则3.求两个以上整数的最小公倍数定理3:设是个正整数, 若则只需证:①是的一个公倍数,即,②设是的任一公倍数,则例1 求解:又四素数算术基本定理1.素数、合数的概念定义:一个大于1的整数,如果它的正因数只有1和它的本身,我们就称它为素数,否则就称为合数.2.性质定理1:设是大于1的整数,则至少有一个素因数,并且当是合数时,若是它大于1的最小正因数,则p ,都有定理2设n是一个正整数,如果对所有地素数np n,则n一定是素数.求素数的基本方法:爱拉托斯散筛法。
定理3:设是素数,是任意整数,则(i) 或(ii) 若则或3.素数的个数定理4:素数的个数是无穷的.4.算术基本定理定理5任一整数n>1都可以表示成素数的乘积,且在不考虑乘积顺序的情况下,该表达式是唯一的.即n= p1… p s , p1≢… ≢p s , (1)其中p i是素数,并且若n = q1…q t , q1≢… ≢q t , 其中q j是素数,则s= t , p i = q j, 1 ≢i ≢s.推论1:设是任一大于1的整数,且为素数,且则是的正因数的充分必要条件是推论2:且为素数.则第二章同余一同余概念和基本性质<一>、同余的定义.定义:如果用去除两个整数所得的余数相同,则称整数关于模同余,记作如果余数不同,则称关于模不同余,记作.定理1:整数关于模同余充分必要条件是<二>、性质.定理2:同余关系是一种等价关系,即满足(1)自反性:(2)对称性:若(3)传递性:若定理3:若则:定理4:若且则定理5:若且则定理6:若,则定理7:若且则定理8:若则定理9设整数n有十进制表示式:n = a k 10k + a k-1 10k-1+ … + a1 10 + a0 , 0≢a i <10则 3 | n的充分必要条件是 3 | a k+ … + a0 ;而9 |n 的充分必要条件是 9 | a k+ … + a0 .定理10设整数n有1000进制表示式:n = a k 1000k+ …+ a1 1000 + a0 , 0≢a i <1000则7(或 11,或13)|n的充分必要条件是7(或11,或13)能整除整数( a0 + a2 + …) –( a1 + a3 + …)例1:求7除的余数.解:除的余数为4.例2:求的个位数.解:的个位数为.二完全剩余系和互素剩余系<一>、剩余类.1.定义1:设是一个给定的正整数.则叫做模的剩余类.定理1:设是模的剩余类,则有(1)中每一个整数必属于这个类中的一个,且仅属于一个.(2)中任意两个整数属于同一类的充要条件是<二>、完全剩余系1.定义2:在模的剩余类中各取一个数则个整数称为模的一组完全剩余系.任意个连续的整数一定构成模的一组完全剩余系.2.形成完全剩余系的充要条件.定理2:个整数形成模的完全剩余系的充要条件是:3.完全剩余系的性质.定理3:若则当遍历模的完全剩余系时,则也遍历模的完全剩余系.定理4 设m是一个正整数,a是满足(a,m)=1的整数,则存在整数a’1≢a’<m,使得aa’≡1(mod m)定理5:若当分别遍历模的完全剩余系时,则也遍历模的完全剩余系.例1:问是否构成模的完全剩余系?解:是的一个排列.能构成模的一组完全剩余系.<三> 简化剩余系1、简化剩余类、简化剩余系概念.定义3:若模的某一剩余类里的数与互素,则把它称为模的一个互素剩余类.在与模互素的全部剩余类中,各取出一整数组成的系,叫做模的一组简化剩余系.在完全剩余系中所有与模互素的整数构成模的简化剩余系.2.简化剩余系的个数.定义4:欧拉函数是定义在正整数集上的函数,的值等于序列与互素的个数.为素数定理6:个整数构成模的简化剩余系的充要条件是定理7:若遍历模的简化剩余系,则也遍历模的简化剩余系定理8设 m 1 ,m 2 是互素的两个正整数,如果x 1 , x 2 分别遍历模 m 1 和 m 2 的简化剩余系,则m 2x 1 + m 1x 2 遍历模m 1 m 2 的简化剩余系. 定理9:若 ,则∏∏--=-===n p knp a ka ap p n p n n pp pn n s |1|1)11()11()11()(101 ϕ则有标准因数分解式为设正整数定理<三>欧拉定理 费马小定理 威尔逊定理1. 欧拉定理 设m 是大于1的整数,如果a 是满足(a , m)=1的整数,则)m mo d (1a)m (≡ϕ2.费马定理 设p 是一个素数,则对任意整数a ,我们有 a p ≡a (mod p) 3.(wilson )设p 是一个素数.则 )p mod (1)!1p (-≡-<四>模重复平方计算法 主要掌握运用该方法解题过程第三章 同余式1.同余式的定义定义1 设m 是一个正整数,设f(x)为多项式其中a i 是整数,则 f(x) ≡0( mod m ) (1)叫作模m 同余式 . 若1n n a x a x a )x (f +++=n a 0 (mod m), 则n 叫做f(x)的次数,记作degf .此时,(1)式又叫做模m 的n 次同余式.2.同余式的解、解数及通解表达式定理 1 设m 是一个正整数,a 是满足a m 的整数则一次同余式 ax ≡b (mod m)有解的充分必要条件是(a , m)|b ,而且, 当同余式有解时,其解数为d =( a , m).定理2设m 是一个正整数,a 是满足(a,m)=1的整数,则一次同余式 ax ≡ 1(mod m)有唯一解x ≡a ’(mod m).定理3 设m 是一个正整数,a 是满足(a,m)|b 的整数,则一次同余式 ax ≡ b(mod m) 的全部解为.1)m ,a (,,1,0t )m mod ()m ,a (m t ))m ,a (m mod ()m ,a (a )m ,a (b x 1-=+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅≡- 3.中国剩余定理定理1 (中国剩余定理)设k 1m ,,m 是k 个两两互素的正整数,则对任意的整数k 1b ,,b ,同余式组)1()m mod (b x )m mod (b x kk 11⎪⎩⎪⎨⎧≡≡一定有解,且解是唯一的 例1 计算).77 mod (21000000解一 利用 2.4定理 1(Euler 定理 )及模重复平方计算法直接计算. 因为77=7·11,,60)11()7()77(=⋅=ϕϕϕ所以由2.4定理1(Euler 定理),)77 mod (1260≡,又1000000=16666·60+40,所以)77 mod (22)2(2404016666601000000≡⋅=,设m=77,b=2,令a=1.将40写成二进制,40=23 + 25 ,运用模重复平方法,我们依次计算如下: (1))77(mod 4,1,02100≡≡≡==b b a a n 计算(2) n 1 = 0, 计算 )77 mod (16b b ,1a a 21201≡≡≡=(3) n 2 = 0, 计算 )77 mod (25b b ,1a a 22312≡≡≡= (4) n 3 = 1, 计算 )77 mod (9b b ,25b a a 234323≡≡≡⋅=(5) n 4 = 0 , 计算)77 mod (4b b ,25a a 24534≡≡≡= (6) n 6 = 1 , 计算 )77 23(mod b a a 545≡⋅=最后,计算出)77 mod (2321000000≡ 解二 令10000002x =,因为77=7·11,所以计算x(mod 77)等价于求解同余式组⎩⎨⎧≡≡)11 mod (b x )77 mod (b x21 因为Euler 定理给出)7 mod (1226)7(≡≡ϕ,以及1000000=166666·6+4,所以)7 mod (22)2(2b 4166666610000001≡⋅≡≡.令 77m m m ,11m ,7m 2121=⋅===,7m M ,11m M 1221====分别求解同余式 )11 mod (17M ),7 mod (111M '2'1≡≡,得到8M ,2M '2'1== 故x ≡2·11·2+8·7·1≡100≡23(mod 77)因此,21000000 ≡23(mod 77) 例2:解同余式组解:原同余式组有解且同解于两两互素同余式组有惟一解.原同余式组的解为第四章 二次同余式与平方剩余1.二次同余式的定义定义1 设m 是正整数,若同余式1)m ,a (),m mod (a x 2=≡有解,则a 叫做模m 的平方剩余(二次剩余);否则,a 叫做模m 的平方非剩余(或二次非剩余).2. 模为奇素数的平方剩余和平方非剩余 讨论模为素数p 的二次同余式1),(),(mod 2=≡p a p a x定理1(欧拉判别条件)设p 是奇素数,(a, p)=1, 则 ( i ) a 是模p 的平方剩余的充分必要条件是);(mod 121p a p ≡-(ii) a 是模p 的平方非剩余的充分必要条件是);(mod 121p ap -≡-并且当a 是模p 的平方剩余时,同余式(1)恰有二解.定理2 设p 是奇素数,则模p 的简化剩余系中平方剩余与平方非剩余的个数各为(p-1)/2,且(p-1)/2个平方剩余与序列:222)21(,,2,1-p 中的一个数同余.且仅与一个数同余. 例1 利用定理判断3.勒让德符号定义1设p 是素数,定义勒让德符号如下:⎪⎩⎪⎨⎧=ap p a p a |01,1)p a (若,的平方非剩余是模,若-的平方剩余是模若欧拉判别法则 设p 是奇素数,则对任意整数a,)p mod (a p a 21p -≡⎪⎭⎫ ⎝⎛ 常用定理及结论设p 是奇素数,则 (1) 1p 1=⎪⎭⎫⎝⎛ (2) 21p )1(p 1--=⎪⎭⎫ ⎝⎛-(3)⎩⎨⎧≡≡=⎪⎭⎫⎝⎛-4)3(mod p , 1-)4 mod (1p ,1p 1若若(4) ;p a p p a ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+(5) ;p b p a p ab ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛(6) 设(a, p) =1, 则1p a 2=⎪⎭⎫ ⎝⎛ (7) 设p 是奇素数,如果整数a, b 满足 a ≡ b(mod p),则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛p b p a(8)812p )1(p 2--=⎪⎪⎭⎫ ⎝⎛(9)互倒定律若p,q 是互素奇素数,则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⋅-q p )1(p q 21q 21p例1⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5355335325330 ,而153553553)1(535132353353)1(5331)1(5322153215215321381532-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-=⎪⎭⎫⎝⎛-⋅--⋅--所以15355335325330-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛第五章 指数与原根一 指数 1.指数的定义定义1 设m>1是整数 ,a 是与m 互素的正整数,则使得)(mod 1m a e≡成立的最小正整数e 叫做a 对模m 的指数,记作)(a ord m.2.指数的性质定理1 设m>1是整数,a 是与m 互素的整数,则整数d 使得)(mod 1m a d≡的充分必要条件是d a ord m|)(.定理1之推论 设m>1是整数,a 是与m 互素的整数,则)(|)(m a ord mϕ性质1设m>1是整数,a 是与m 互素的整数 (i) 若b ≡a(mod m),则)b (ord )a (ord m m =(ii)设1a-使得)m mod (1a a1≡-则 )a (ord )a (ord m 1m=-.性质2 设m>1是整数,a 是与m 互素的整数,则)(mod m a a kd≡的充分必要条件是))((mod a ord k d m ≡性质3 设m>1是整数,a 是与m 互素的整数设d ≣0,为整数,则)),(()()(d a ord a ord a ord mmdm=二 原根1. 原根的定义定义 若(a,m)=1, 如果a 对模m 的指数是)(m ϕ,即)()(a o r d m m=ϕ则a 叫做模m 的原根 2.原根的相关定理及性质定理1 设m>1是整数 ,a 是与m 互素的整数.则1)(1,,,1-=a ord m aa a 模m 两两不同余,特别地,当a 是模m 的原根,即)()(m a ord m ϕ=时,这)(m ϕ个数组成模m 的简化剩余系定理2 设m>1是整数,g 是模m 的原根,设d ≣0为整数,则dg是模m 的原根当且仅当1))m (,d (=ϕ 3. 原根存在的条件定理1 设p 是奇素数,则模p 的原根存在.定理2 设g 是模p 的一个原根,则g 或者p+g 是模p 2 的原根. 定理3设p 是一个奇素数,则对任意正整数a,模p a 的原根存在.更确切地说,如果g 是模 p 2的一个原根,则对任意正整数a ,g 是模p a 的原根.定理4设a ≣ 1,g 是模p a 的一个原根,则g 与g+ p a 中的奇数是模2p a 的一个原根定理5 模m 的原根存在的充分必要条件是a a2p ,p ,4,2m =,其中p是奇素数.定理6设m>1, 的所有不同素因数是q 1 , …,q k , 则g 是模m 的一个原根的充分必要条件是iq /)m (g ϕ 1(mod m),i=1,…,k)m (ϕ。