当前位置:文档之家› 粉末冶金实验报告

粉末冶金实验报告


图 2-4 2%~3%硝酸酒精溶液浸蚀 500x
图 2-5 未浸蚀
200X
图 2-6 2%~3% 硝酸酒精溶液浸蚀 500x
越努力 ·越幸运
共享知识 分享快乐
图 2-7 未浸蚀
200X
图 2-8 2%~3% 硝酸酒精溶液浸蚀 500x
8. 实验数据分析
(1) 由表一可以看到冷压烧结试样在烧结前后的数据对比。粉末经过烧结后,体积 减小,质量也有较小程度的减小,但相应的密度增大。体积减小主要是因为烧结 能够使得粉末之间的接触点熔化结合,从而减小粉末间的间隙,质量减小主要是 因为烧结可以使得粉末里的水分蒸发;但总体来看,体积减小的程度相对大于质
保温 1h 保温 1h
700℃ -1170℃或 1250℃ 1 小时
保温 2h
含碳量( 0.2%和 0.8%)是在 1250℃进行烧结的 , 保温 2 小时。 含碳量 2.0%是在 1170℃进行烧结的,保温 1.5 小时。
(4) 性能检测 测量并计算烧结后试样密度,观察烧结后金相形貌变化及检测烧结后试样硬
越努力 ·越幸运
共享知识 分享快乐
(5) 可以实现近净形成形和自动化批量生产, 从而,可以有效地降低生产的资源和 能源消耗。
(6) 可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一 种可有效进行材料再生和综合利用的新技术。
我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。
(1) 粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组 织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、 高温超导材料、新型金属材料(如 Al-Li 合金、耐热 Al 合金、超合金、粉末耐蚀
不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。 (2) 可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材
31 31 40 40
密度
(g/ cm3)
7.70 7.50 7.57 7.64
HB/HRB
90/37.4 117/65.4 200/ 96.5 185/ 95.6
越努力 ·越幸运
共享知识 分享快乐
图 2-1 未浸蚀
200X
图 2-2 2%~3%硝酸酒精溶液浸蚀 500x
图 2-3 未浸蚀
200X
共享知识 分享快乐
实验 11
铁基粉末冶金
1. 实验目的
(1) 了解粉末冶金零件制备过程。 (2) 了解烧结温度对烧结过程和制品性能的影响。 (3) 了解烧结时间对烧结过程和制品性能的影响。 (4) 了解石墨添加或用金属粉末 (或金属粉末与非金属粉末的混合物 ) 作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工业 技术。目前,粉末冶金技术已被广泛应用于交通、机械、电子、航空航天、兵器、 生物、新能源、信息和核工业等领域,成为新材料科学中最具发展活力的分支之 一。粉末冶金技术具备显著节能、省材、性能优异、产品精度高且稳定性好等一 系列优点,非常适合于大批量生产。另外,部分用传统铸造方法和机械加工方法 无法制备的材料和复杂零件也可用粉末冶金技术制造,因而备受工业界的重视。
料,这些材料具有优异的电学、磁学、光学和力学性能。 (3) 可以容易地实现多种类型的复合, 充分发挥各组元材料各自的特性,是一种低
成本生产高性能金属基和陶瓷复合材料的工艺技术。 (4) 可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品, 如新型多
孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。
小时)(实验所用原材料事先备好) 。
(2) 压制试样(由实验指导教师演示,学生操作) 油压机表显 25Mpa 下压制试样,测量并计算毛坯密度
(3) 烧结
越努力 ·越幸运
共享知识 分享快乐
按制定好的烧结工艺烧结,随炉冷却到室温,整个烧结过程氩气保护。
RT-300℃ 300℃-700℃
1 小时 1 小时
越努力 ·越幸运
共享知识 分享快乐
粉末烧结后的金相形貌相对于 Fe- Fe3C 相图来说: (1)晶界显得不明显; (2) 晶粒均匀性相对较差,在碳含量高时表现的尤为明显; (3)石墨形态更多的为块状, 而非 Fe- Fe3C 中的层片状。这三点不同的原因,我认为是由于粉末烧结的工艺过 程使碳颗粒是以固相扩散的方式向基体渗透,扩散程度比传统的成形方法要差。 除此之外,受到粉末大小和均匀性的影响,一些块状的石墨颗粒无法真正扩散到 基体当中,在晶界间存在着较大的石墨块。可以通过在粉末冶金过程中提高单位 压制压力、增长保温时间减小这种差异;还可以通过在得到烧结的材料后,进行
3. 实验设备与材料
主要仪器设备:液压机( 45 吨)、ZT-30-20Y 真空热压烧结炉、球磨机、模具、 电子天平、游标卡尺、金相显微镜、洛氏硬度计
主要原料:电解铁粉、石墨粉、硬脂酸锌、机油、氩气等
4. 实验内容
(1) 采用冷压烧结法制备铁—石墨试样。 (2) 采用热压烧结法制备铁—石墨试样。
(3) 研究烧结温度对制品性能的影响。 (4) 研究烧结时间对制品性能的影响。 (5) 研究石墨含量对制品性能的影响。
20.0 19.66 6.18 6.10
19.99 19.67 6.34 6.28
试样密度 ( )
烧结前
烧结后
7.00 7.04
6.88 6.93
6.70 6.72
排水法测密度公式: ρ固=w1 / (w 1- w2)
w1:物体在空气中的质量(克) w 2 :物体在蒸馏水中的质量(克)
石墨含量( %)
(表二) 测量密度(排水法)及硬度
冷压烧结试样
热压烧结试样
压坯密度 ( ) 烧结后密度 ( ) 硬度 (HB) 密度( p)
硬度 (HB)
0.2
6.89
7.04
60.9
7.50
117
试样号 C0.2
0.8 2.0
图号 1-1~1-2
6.88
6.97
80.4
7.57
200
6.69
6.80
114
7.64
量减小量,故密度有小幅的增大。
(2) 由表二可以看到冷压烧结后试样密度均有所增大,且随粉末的石墨含量越高, 硬度越大。冷压试样烧结后的密度增大的原因同“ (1)”中所述,硬度越大主要是 因为石墨含量的增多导致渗碳体的增多,所以硬度大。热压烧结试样硬度并非随 碳含量增大而增大,而是存在一个峰值,但总体而言,在同样碳含量的情况下, 热压烧结试样的硬度大于冷压烧结试样。这时由于在热压烧结过程中,渗碳体颗
C2.0 1-5~1-6
2.0
1170
90
737
6.80 114/75.8
越努力 ·越幸运
共享知识 分享快乐
图 1-1 未浸蚀
200X
图 1-2 2%~3%硝酸酒精溶液浸蚀 500x
图 1-3 未浸蚀
200X
图 1-4 2%~3%硝酸酒精溶液浸蚀 500
图 1-5 未浸蚀
200X
图 1-6 2%~3%硝酸酒精溶液浸蚀 500x
热处理来进一步提升材料的组织性能。
越努力 ·越幸运
粒分布更为均匀。
(3) 根据不同碳含量的冷压、热压烧结试样的金相组织图可以看到,碳含量增高会 使组织中相应的硬质颗粒增多,且热压过程中硬质颗粒的分布更为均匀,由此也 可以解释碳含量高相应的硬度高,同时,热压烧结由于更利于硬质颗粒的均匀分
布,因此其硬度也大于同样碳含量的冷压烧结试样。
9. 思考题
不同碳含量的铁、石墨合金粉末烧结后金相形貌与 Fe-Fe3C 相图中对应碳含 量的金相组织有何差别?试分析原因?可采取什么措施减小或消除这种差别?
广义的粉末冶金制品业涵括了铁石刀具、硬质合金、磁性材料以及粉末冶金 制品等。狭义的粉末冶金制品业仅指粉末冶金制品,包括粉末冶金零件 (占绝大部
分)、含油轴承和金属射出成型制品等。本报告使用的行业定界为狭义范围。 粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔
铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料 和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。
粉末冶金实验 热压烧结 试样金相组织照片
试样号
H0 H0.2 H0.8 H2.0
图号
2-1~2-2 2-3~2-4 2-5~2-6 2-7~2-8
含碳量 ( %)
0 0.2 0.8 2.0
烧结温度 (℃) 1100 1200 1150 1150
保温时间 ( min )
30 10 20 20
单位压制压 力( Mpa )
185
实验金相组织图如下:
粉末冶金实验 冷压烧结 试样金相组织照片
含碳量 ( %)
烧结温度 (℃)
保温时间 ( min )
单位压制压 力( Mpa )
密度
3
(g/ cm)
HB/HRB
0.2
1250
120
737
7.04 60.9/27.8
C0.8 1-3~1-4
0.8
1250
120
737
6.97 80.4/55.4
5. 实验步骤与注意事项
(1) 每组压制 3 个试样,测量尺寸、重量后按实验计划确定的参数进行烧结。 (2) 烧结结束后,再次测量试样尺寸、重量,比较烧结前后密度的变化,观察金相
组织和检测试样硬度。
6. 粉末冶金实验操作流程
(1) 配料 先将铁粉进行筛分,再根据实验方案称取相应重量的还原铁粉,为改善石墨 粉与铁粉混合均匀,加入少许机油,混匀后再加入相应配比的石墨粉、少许润滑 剂(硬脂酸锌, 1.0%),然后在球磨机上进行混料(球磨转速为 300 转 /分,球磨 2
相关主题