微型专题4 卫星变轨问题和双星问题知识目标核心素养1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度.1.掌握卫星变轨的实质及蕴含的思想方法.2.掌握“双星”的特点,建立“双星”问题模型.一、人造卫星的发射、变轨与对接1.发射问题要发射人造卫星,动力装置在地面处要给卫星一很大的发射初速度,且发射速度v>v1=7.9 km/s,人造卫星做离开地球的运动;当人造卫星进入预定轨道区域后,再调整速度,使F引=F向,即GMmr2=mv2r,从而使卫星进入预定轨道.2.卫星的变轨问题卫星变轨时,先是线速度v发生变化导致需要的向心力发生变化,进而使轨道半径r发生变化.(1)当卫星减速时,卫星所需的向心力F向=mv2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.(2)当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁.以上两点是比较椭圆和圆轨道切点速度的依据. 3.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图1甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.图1(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.例1 如图2所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )图2A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的周期大于在轨道2上的周期C .卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D .卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B解析 卫星在圆轨道上做匀速圆周运动时有:G Mm r 2=m v 2r ,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误. 由开普勒第三定律知T 3>T 2,B 项正确.在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.在同一点P ,由GMmr 2=ma 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度,D 项错误.【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的对接和变轨问题判断卫星变轨时速度、加速度变化情况的思路:(1)判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断. (2)判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.(3)判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析.(4)判断卫星的加速度大小时,可根据a =Fm =G M r2判断. 二、双星问题1.如图3所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕它们连线上的某一固定点做周期相同的匀速圆周运动,这种结构叫做“双星”.图32.双星问题的特点(1)两星的运动轨道为同心圆,圆心是它们之间连线上的某一点. (2)两星的向心力大小相等,由它们间的万有引力提供. (3)两星的运动周期、角速度相同.(4)两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .3.双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2.例2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图4所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,求双星的运行轨道半径r 1和r 2及运行周期T .图4答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力 对m 1:Gm 1m 2L2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L , 解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2. 由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L3G (m 1+m 2).【考点】双星问题 【题点】双星问题针对训练 (多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、引力常数并利用牛顿力学知识,可以估算出这一时刻两颗中子星的( ) A .质量之积 B .质量之和 C .速率之和 D .各自的自转角速度答案 BC解析 两颗中子星运动到某位置的示意图如图所示每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得Gm 1m 2l2=m 1ω2r 1①Gm 1m 2l2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G,质量之和可以估算.由线速度与角速度的关系v =ωr 得v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自的自转角速度无法求解.1.(卫星的变轨问题)(多选)肩负着“落月”和“勘察”重任的“嫦娥三号”沿地月转移轨道直奔月球,如图5所示,在距月球表面100 km 的P 点进行第一次制动后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,之后,卫星在P 点又经过第二次“刹车制动”,进入距月球表面100 km 的圆形工作轨道Ⅱ,绕月球做匀速圆周运动,在经过P 点时会再一次“刹车制动”进入近月点距月球表面15公里的椭圆轨道Ⅲ,然后择机在近月点下降进行软着陆,则下列说法正确的是( )图5A .“嫦娥三号”在轨道Ⅰ上运动的周期最长B .“嫦娥三号”在轨道Ⅲ上运动的周期最长C .“嫦娥三号”经过P 点时在轨道Ⅱ上运动的线速度最大D .“嫦娥三号”经过P 点时,在三个轨道上的加速度相等 答案 AD解析 由于“嫦娥三号”在轨道 Ⅰ 上运动的半长轴大于在轨道 Ⅱ 上运动的半径,也大于轨道 Ⅲ 的半长轴,根据开普勒第三定律可知,“嫦娥三号”在各轨道上稳定运行时的周期关系为T Ⅰ>T Ⅱ>T Ⅲ,故A 正确,B 错误;“嫦娥三号”在由高轨道降到低轨道时,都要在P 点进行“刹车制动”,所以经过P 点时,在三个轨道上的线速度关系为v Ⅰ>v Ⅱ>v Ⅲ,所以C 错误;由于“嫦娥三号”在P 点时的加速度只与所受到的月球引力有关,故D 正确.【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题2.(卫星、飞船的对接问题)如图6所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图6A .使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B .使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C .飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D .飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误. 3.(双星问题)如图7所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图7A .m 1、m 2做圆周运动的线速度之比为3∶2B .m 1、m 2做圆周运动的角速度之比为3∶2C .m 1做圆周运动的半径为25LD .m 2做圆周运动的半径为25L答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得Gm 1m 2L2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2 所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω,故v 1∶v 2=r 1∶r 2=2∶3. 综上所述,选项C 正确. 【考点】双星问题 【题点】双星问题一、选择题考点一卫星的变轨问题1.(多选)如图1所示,航天飞机在完成太空任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的近地点,关于航天飞机的运动,下列说法中正确的有( )图1A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的速度小于在轨道Ⅰ上经过A的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度答案ABC【考点】卫星、飞船的对接和变轨问题【题点】卫星、飞船的发射和变轨问题2.(多选)如图2所示,在嫦娥探月工程中,设月球半径为R,月球表面的重力加速度为g0.飞船在半径为4R的圆形轨道Ⅰ上运动,到达轨道的A点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B时,再次点火进入近月轨道Ⅲ绕月球做圆周运动,则( )图2A.飞船在轨道Ⅲ上的运行速率大于g0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B处的运行速率C.飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B处的向心加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比TⅠ∶TⅢ=4∶1答案BC解析 由mv 2R =mg 0知,v =g 0R ,即飞船在轨道Ⅲ上的运行速率等于g 0R ,A 错误.由v =GM r知,v Ⅰ<v Ⅲ,而飞船在轨道Ⅱ上的B 点做离心运动,有v ⅡB >v Ⅲ,则有v ⅡB >v Ⅰ,B 正确.由a =GMr 2知,飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度,C 正确.由T =2πr 3GM知,飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=8∶1,D 错误. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题3.如图3所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )图3A .v 1>v 3>v 2,a 1>a 3>a 2B .v 1>v 2>v 3,a 1>a 2=a 3C .v 1>v 2=v 3,a 1>a 2>a 3D .v 1>v 3>v 2,a 1>a 2=a 3 答案 D解析 根据万有引力提供向心力,即GMm r 2=ma 得:a =GMr2,由题图可知r 1<r 2=r 3,所以a 1>a 2=a 3;当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,所以v 3>v 2,根据GMm r 2=mv 2r得:v =GMr,又因为r 1<r 3,所以v 1>v 3,故v 1>v 3>v 2.故选D. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题4.(多选)如图4所示,搭载着“嫦娥二号”卫星的“长征三号丙”运载火箭在西昌卫星发射中心点火发射.卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km 、周期为118 min 的工作轨道Ⅲ,开始对月球进行探测,下列说法正确的是( )图4A .卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度小B .卫星在轨道Ⅲ上经过P 点的加速度比在轨道Ⅰ上经过P 点的加速度大C .卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上的长D .卫星在轨道Ⅰ上经过P 点的速度比在轨道Ⅲ上经过P 点的速度大 答案 AD解析 卫星在轨道Ⅲ上的半径大于月球半径,根据G Mm r 2=m v 2r ,得v =GMr,可知卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度小,A 正确.卫星在轨道Ⅲ上和在轨道Ⅰ上经过P 点时所受万有引力相等,所以加速度也相等,B 错误.轨道Ⅲ的半径比轨道Ⅰ的半长轴小,根据开普勒第三定律,卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上的短,C 错误.卫星从轨道Ⅰ经多次变轨进入轨道Ⅲ,在P 点需依次减速,D 正确. 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题5.(多选)如图5所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )图5A .b 、c 的线速度大小相等,且大于a 的线速度B .a 加速可能会追上bC .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 答案 BD解析 因为b 、c 在同一轨道上运行,故其线速度、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v =GMr可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c 2r c ,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b 2r b,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v =GMr可知,r 减小时,v 逐渐增大,故选项D 正确. 考点二 双星问题6.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知引力常数为G ,由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT2B.4π2r 31GT 2C.4π2r3GT 2D.4π2r 2r 1GT2答案 D解析 设S 1和S 2的质量分别为m 1、m 2,对于S 1有G m 1m 2r 2=m 1⎝ ⎛⎭⎪⎫2πT 2r 1,得m 2=4π2r 2r 1GT 2.【考点】双星问题 【题点】双星问题7.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A .质量大的天体线速度较大 B .质量小的天体角速度较大 C .两个天体的向心力大小一定相等 D .两个天体的向心加速度大小一定相等 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 项错误;根据牛顿第二定律,有:Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2 其中:r 1+r 2=L 故r 1=m 2m 1+m 2L r 2=m 1m 1+m 2L故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 项错误. 【考点】双星问题 【题点】双星问题8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍 答案 A解析 双星系统内的两颗星运动的角速度相同,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相同,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误. 【考点】双星问题 【题点】双星问题9.(多选)宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不会因为万有引力的作用而吸引到一起.如图6所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )图6A .质量之比m A ∶mB =2∶1 B .角速度之比ωA ∶ωB =1∶2C .线速度大小之比v A ∶v B =1∶2D .向心力大小之比F A ∶F B =2∶1答案 AC解析 双星都绕O 点做匀速圆周运动,由二者之间的万有引力提供向心力,角速度相等,设为ω.根据牛顿第二定律,对A 星:G m A m B L2=m A ω2r A ① 对B 星:Gm A m B L2=m B ω2r B ② 联立①②得m A ∶m B =r B ∶r A =2∶1.根据双星运行的条件有角速度之比ωA ∶ωB =1∶1,由v =ωr 得线速度大小之比v A ∶v B =r A ∶r B =1∶2,向心力大小之比F A ∶F B =1∶1,选项A 、C 正确,B 、D 错误.【考点】双星问题 【题点】双星问题10.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2kT D.n kT 答案 B解析 如图所示,设两恒星的质量分别为M 1和M 2,轨道半径分别为r 1和r 2.根据万有引力定律及牛顿第二定律可得GM 1M 2r 2=M 1(2πT )2r 1=M 2(2πT )2r 2,解得G (M 1+M 2)r 2=(2πT )2(r 1+r 2),即GMr3=(2πT)2①当两星的总质量变为原来的k 倍,它们之间的距离变为原来的n 倍时,有GkM (nr )3=(2πT ′)2② 联立①②两式可得T ′=n 3kT ,故选项B 正确. 【考点】双星问题 【题点】双星问题 二、非选择题11.(卫星的有关计算)设想着陆器完成了对月球表面的考察任务后,由月球表面回到围绕月球做圆周运动的轨道舱,其过程如图7所示.设轨道舱的质量为m ,月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常数为G ,试求:图7(1)月球的质量;(2)轨道舱的速度大小和周期.答案 (1)gR 2G (2)Rg r 2πr R rg解析 (1)设月球的质量为M ,则在月球表面GMm ′R 2=m ′g , 得月球质量M =gR 2G(2)设轨道舱的速度为v ,周期为T ,则G Mm r 2=m v 2r 得:v =R grG Mm r 2=m 4π2T 2r 得:T =2πr Rr g. 12.(变轨问题)中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图8所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,求:图8(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2.答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R解析 (2)在地球表面有mg =GMm R 2① 根据牛顿第二定律有:GMm(R +h 1)2=ma A ② 由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)飞船在预定圆轨道上飞行时由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③ 由题意可知,飞船在预定圆轨道上运行的周期为T =tn④由①③④式联立解得h 2=3gR 2t 24n 2π2-R . 【考点】卫星、飞船的对接和变轨问题 【题点】卫星、飞船的发射和变轨问题。