几种典型的晶体生长方法
包括有提拉法、坩埚下降法、区熔法、基座 法、冷坩埚法与焰熔法等。
⑴ 提拉法生长技术及改进
由 J.Czochralski 于1917 年首先提出,
亦称恰克拉斯基法。是从熔体中生长晶体应 用最广的方法,许多重要的实用晶体都是用 此方法生长的。该技术控制晶体品质的主要 因素是固液界面的温度梯度、生长速率、晶 转速率以及熔体的流体效应等。
第二章 几种典型的晶体生长方法
主要知识点:
• 晶体生长的技术要求 • 几种典型晶体生长方法简介 • 提拉法生长技术特点及新进展 • 选择生长方法的基本原则 • 人工晶体发展之趋势
问题提出:
随着科技进步和社会发展,人们对于功能晶体 需求的数量越来越大,对性能要求也越来越高, 自然界中出产的各种天然晶体已远远不能满足人 们的要求: • 天然晶体作为地球亿万年来逐渐积累的自然资 源,其储量是有限的。 • 由于自然条件的自发性,天然晶体不可避免有 较多的各种缺陷,其纯净度和单晶性也远不能和 人工晶体相比。 • 由于地球在演化过程中条件属于自然条件,不 可能生长出那些只有极端条件下才能生长的晶体。
蒸发法育晶装置示意图
⑸ 高温溶液法
将晶体的原成分在常压高温下溶解于低熔点 助熔剂溶液内,形成均匀的饱和溶液;然后通 过缓慢降温或其他方法,形成过饱和溶液而使 晶体析出。
良好的助熔剂需要具备下述物理化学性质: • 应具有足够强的溶解能力,在生长温度范围内, 溶解度要有足够大的变化; • 在尽可能宽的范围内,所要的晶体是唯一的稳 定相。最好选取与晶体具有相同离子的助熔剂, 而避免选取性质与晶体成分相近的其他化合物;
缺点:
设备比较复杂,调节各槽之间适当的温度梯度 和溶液流速之间的关系需要有一定的经验。
溶液法的特点:
• 在远低于熔点温度下生长,避开了可能 发生的分解和晶型转变;
• 热源、生长容器、控制系统容易选择;
• 降低了黏度,使高温冷却时不易形成晶 体的物质形成晶体;
• 温场分布均匀,宜于生长小应力、大尺 寸和均匀性好的晶体;
☺ 可方便、精确地控制和调整生长条 件;
☺ 可使用定向籽晶、“回熔”和“缩 颈”等工艺,提高晶体完整性并得 到所需结构取向的晶体;
☺ 观察方便,控温精度高,可以较快 的生长速率生长高质量的晶体;
☺ 晶体不与坩埚接触,显著减小晶体的应力和 坩埚壁寄生成核的影响;
15~25 ℃为宜。
⑷ 蒸发法
基本原理:
将溶剂不断蒸发,通过控制蒸发量来控 制溶液过饱和度,使溶液始终保持在一定过
饱和状态,从而使晶体不断生长。 特点:
比较适合于溶解度较大而溶解度温度系 数很小或者是具有负温度系数的物质。与流 动法一样也是在恒温条件下进行的,适用于 高温(>60 ℃ )晶体生长。
晶体生长
气相 结晶固相 液相 结晶固相
过冷或过饱和
非晶固相 结晶固相
可自发进行
一种结晶固相 另一种结晶固相
温度或压力 发生变化
总的趋势是使体系的自由能降低
提拉法
坩埚下降法
熔体法生长 焰熔法
区熔法
冷坩埚熔壳法
单
晶
生
低温(水)溶液法
长
方Leabharlann 溶液法生长 高温溶液法法
水热与溶剂热法
气相法生长
物理气相沉积 (PVD) 化学气相沉积 (CVD)
细小的颈部难以承受太大的拉力; 大直径导致晶体内外温差增大; 晶体中心与外周电阻率与氧浓度的不均
一性; 对石英坩埚的品质有更高要求(更高强
度、更高纯度和低的制造成本); 其他。
生长大直径晶体的机械手
红宝石晶体
Y3Al5O12 : Nd 晶体
硅酸镓镧(LGS)晶体
KDP 晶体
提拉法的特点:
只要采取适当的措施,可生长比熔体法生长的 晶体热应力更小、更均匀和完整;
生长速度慢,生长周期较长,晶体尺寸较小; 助熔剂往往带有腐蚀性或毒性; 由于采用的助熔剂往往是多种组分的,各组分
间的相互干扰和污染是很难避免的。
遇到的主要问题是:
如何有效地控制成核数目和成核位置; 如何提高溶质的扩散速度和晶体的生长
• 晶体的自范性得以充分体现;
• 多数情况下,生长过程易观察,设备也 较简单;
• 生长速度慢、周期长,对设备的稳定性 要求高;
• 组分多,影响的因素也较多。
§⒉ 熔体法生长
使原料在高温下完全熔融,然后采用不同技 术手段,在一定条件下制备出满足一定技术 要求的单晶体材料。熔体必须在受控制的条 件下的实现定向凝固,生长过程是通过固-液界面的移动来完成的。熔体法生长是制备 大单晶和特定形状单晶最常用的和最重要的 一种方法,具有生长快、晶体的纯度和完整 性高等优点。
温差水热法
天然生长的水晶多为成簇状的六方柱形,而人工“生长” 的水晶,根据生长水晶所用的籽晶的取向,以及生长方向、 生长温度分布、溶液浓度分布、过冷度等条件的不同,可 以有不同的宏观外形。 透过人工生长的多面体水晶的璀璨 的表面,有时候还还可以看见作为晶体生长的“种子”的 籽晶。
KTP 晶体
小压力釜(容积20 C.C)
dA f
d 趋肤深度 f频率
电阻率 磁导 率 A常数
定向籽晶和独特工艺
籽晶实际上就是提供了一个晶体继续生长的 中心,其选材的好坏,对晶体的质量影响极大。 籽晶应无位错、无应力、无嵌镶结构且没有切 割损伤等。
决定晶面的生长机制 影响生长工艺参数 决定晶体的物理性质 影响晶体的质量
♣ 有利于晶体的后加工和器件化;
♣ 有利于晶体生长的重复性和产业化;
没有“最好的”,只有“最适合 的”
§⒈ 溶液法生长
溶液法的基本原理是将原料(溶 质)溶解在溶剂中,采取适当的措施 造成溶液的过饱和状态,使晶体在其 中生长。包括有水溶液法、水热法与 助熔剂法等。
水溶液法一般是在常压和较低温度 (100℃以下)下进行。
人工晶体
根据结晶物质的物理化学特性,在掌握了晶 体的生长规律与生长习性的基础上,运用人类 所创建的各种单晶生长技术或方法以及生长设 备,生成或合成出符合人类意愿的并具有重大 应用价值的晶体材料。此晶体可以是自然界存 在的,也可以是自然界不存在的。
人工晶体是近代晶体学的重要分支学科, 是材料科学的重要组成部分及其研究、探索与 发展的前沿领域,更是多学科、多领域通力合 作的结果和集体智慧的结晶。
intensity(a.u.) 10 11 10 200 112
14000
f
12000
10000 e
8000 d
6000
c
4000
b
2000
0a
10不同2反0 应条30件下4Z0 nO的50 SEM60照 70
片 2degree)
水热法制备 NaY晶F体4
祖母绿晶体
绿柱石族宝石
化学成分:Be3Al2Si6O18 (其中Be、Al可被不同元素所替代)
选择何种生长技术,取决于晶体的物理、 化学性质和应用要求。一般原则为:
♣ 满足相图的基本要求;
♣ 有利于快速生长出具有较高实用价值、 符合一定技术要求的晶体;
♣ 有利于提高晶体的完整性,严格控制晶 体中的杂质和缺陷;
♣ 有利于提高晶体的利用率、降低成本。 生长大尺寸的晶体始终是晶体生长工作 者追求的重要目标;
人工晶体研究
晶体结构 晶体生长 性能与表征研究 晶体材料应用
晶体制备技术研究
晶体生长理论研究
生长 技术 与方 法研 究
设备 自动 化研 究
晶体结构、 缺陷、生 长形态与 生长条件 的关系研 究
界面结构、 界面热、质 输运、界面 反应动力学 研究
人工晶体研究的内容
人工晶体的优势:
具有较高的完整性,包括结构完整性和 组成完整性等;
饱和曲线和过饱和曲线
⑶ 降温法
基本原理: 利用物质大的溶解度和较大的正溶解
度温度系数,在晶体生长过程中逐渐降低温度, 使析出的溶质不断在晶体上生长。
关键:晶体生长过程中掌握适合的降温速度,使
溶液始终处在亚稳态区内并维持适宜的过饱和 度。
要求:物质溶解度温度系数不低于1.5g/kg℃;
生长温度一般在50~60 ℃ ,降温区间
籽晶培养
切割好的籽晶 籽晶杆
回熔工艺:
保证熔体与籽晶接触部 分凝固时,其原子排列由 于受到籽晶中原子规则排 列的引导而按同样的规则 排列起来,并且保持籽晶 的晶向。
籽 晶
熔体
缩径工艺:
可最大限度地减少位 错和嵌镶结构等缺陷, 提高晶体的完整性。
嵌 镶 结 构
位 错 线
下籽晶
缩颈
放肩
等径
大直径化带来的技术问题
可分为温差法、等温法和降温法等。
特点:
❖ 适于生长熔点很高,具有包晶反应或非同成
分熔化而在常温常压下又不溶于各种溶剂或 溶解后即分解,且不能再结晶的晶体材料。 ❖ 反应温度相对较低,可以制备其他方法难以 制备的物质低温同质异构体。 ❖ 可以制备其他方法难以制备的具有多型性的 相变材料。 ❖ 生长区基本处于恒温和等浓度状态,温度梯 度小,晶体热应力小。 ❖ 宏观缺陷少、均匀性和纯度高。
提拉炉
打开炉门后的提拉炉
后热器 石英桶 加热器
熔体 保温材料
坩埚
提拉法生长示意图
籽晶定位 装料
升温
化料
过热处理 下籽晶
热处理
出炉
降温 等径生长
回熔、洗晶 提拉
放肩 提拉
提拉法晶体生长流程
当感应器(线圈)中通入一定频率的交变电流时,周 围即产生交变磁场。交变磁场的电磁感应作用使导 体(坩埚)内产生封闭的感应电流--涡流,感应电 流在导体截面上的分布很不均匀。导体表层高密度 电流的电能转变为热能而使导体的温度升高。
Seed holder View port