第五章精密加工中的测量技术
• 为了使用上的需要常将各级精度的量块进行检定,得到量块的实 际长度,将检定量块长度实际值的测量极限误差作为误差处理。
6
三、工厂自己专用的长度基准
• 矩形量块作为长度基准存在问题:1)两端测量面不平行;2)两 端测量面和侧面不垂直;3)测量面平面度不好。
• 美国穆尔公司经过实践和反复研究,采用圆柱端面规作为长度基 准。外圆柱面可磨到很高圆柱度,水平放在V形支架内,可旋转以 校验端面和外圆柱面的垂直度,容易达到两端面的高度平行。
4)激光准直仪法
14
氦-氖激光器发出的激光的中心连线 构成激光准直测量的一条基准直线。 当光电接收靶5中心与激光束中心重合 时,指示表指示为零,若靶子中心偏 离激光束中心,指示表指示出数值即 偏差值。测量时首先将仪器与靶子调 整好,然后将靶子沿被测表面测量方 向移动,便能得到直线度误差的数值。
13
3)光轴法
测微准直望远镜或自准直仪发出的光线为理想直线,测出被测直线相 对于该理想直线的偏差值,经数据处理求出被测线的直线度误差。
测量步骤: 1)将被测线两端点连线调整到与光轴测量
基线大致平行; 2)若被测线为平面线,则xi代表被测线长
度方向的坐标值, yi为被测线相对于测量基 线的偏差值。
若被测线移动瞄准靶2,同时记录各点示值 (yi)。再经数据处理求出直线度误差值。
常用三块平台轮流对研,找出凸起进行刮研,直到接触斑点分布均匀。对高 精度测量平台用电子水平仪、自准直光管或双频激光干涉仪,测出平台的水平 倾角,经过数据处理,可得到平台各处不平面度误差的具体数值。
9
5.4 直线度、平面度和垂直度的测量
一、直线度的测量
线差法
线差法的实质是:用模拟法建立理想直线,然后把被测实际线上各被测 点与理想直线上相应的点相比较,以确定实际线各点的偏差值,最后通 过数据处理求出直线度误差值。
• 继圆柱端面规后又制成步距规,英制的步距规每一步距的增量为 1in(全长18和16in),公制的步距规每一步距的增量为30mm (全长480mm)。全长步距的误差不超过0.05µm。
7
5.3 测量平台
一、测量平台的选择
• 1.平台精度等级 • 测量平台采用00或0级,生产中使用的平台的测量表面多数为矩形,长 宽比约为4:3,高精度的平台采用正方形台面,平面度达到0.6µm。
4
5.2 长度基准
一、长度基准和米定义
• 米制是18世纪法国最早提出的,“以经过巴黎的地球子午线自北极至赤道这 一段弧长的一千万分之一为一米”。1880年国际计量局又制作了30多根铂 铱合金的高精度米尺——国际米原器。
• 1960年10月14日在巴黎通过用氦Kr86在真空中的波长作为长度基准:1m= 1650763.73×Kr86的波长。
• 1983年11月第17届国际计量大会上,批准了米的最新定义。 • 新定义的内容:米是光在真空中在1/299792458 s的时间间隔内所进行的路
程长度。
5
二、量块的检定
• 量块是由两个平行的测量面之间的距离来确定其工作长度的高精 度量具,其长度为计量器具的长度标准。按J系统》的规定,量块分为00、0、K、 1、2、3六级。我国对各类量块的检定按JJG146-1994进行。
目前在基础工业的某些领域,精密测量已成为不可分割的重要组成部分。 在电子工业部门,精密测量技术也被提到从未有过的高度。例如制造超大 规模集成电路,目前半导体工艺的典型线宽为0.25µm,正向0.18µm过渡, 2009年的预测线宽是0.07µm。此外,在高纯度单晶硅的晶格参数测量中, 以及对生物细胞、空气污染微粒、石油纤维、纳米材料等基础研究中,无 不需要精密测量技术。
1)干涉法
等厚干涉条纹
对于小尺寸精密表面的直线度误差。 把平晶置于被测表面上,在单色光 的照射下,两者之间形成等厚干涉 条纹,然后读出条纹弯曲度a及相 邻两条纹的间距b值,被测表面的 直线度误差为 a 。条纹向外弯,
b2
表面是凸的,反之,则表面是凹的。
10
用平晶测平尺的直线度
对于较长的研磨表面,如研磨平尺,可采用圆形平晶进行分段测量, 即所谓3点连环干涉法测量。若被测平尺长度为200mm,则可选用 Φ100mm的平晶,将平尺分成4段进行测量,每次测量以两端点连线 为准,测出中间的偏差。测完一次,平晶向前移动50mm(等于平晶 的半径)。然后通过数据处理,得出平尺的直线度误差。
• 2.平台结构 • 多数采用箱式结构,扁平的箱中有加强筋支承。
• 3.测量平台的材料 • 铸铁:一定耐磨性、较好短期稳定性,受潮长锈不变形,碰撞有毛刺。 • 花岗岩:耐磨性好、长期稳定性好、受潮变形不生锈,碰撞有小坑无 毛刺。
8
二、测量平台的支承
三点支承法 多点支承法
三、测量平台的本身的精度检验
11
干涉法举例:
测量数据
数据处理
2)跨步仪法
12
原理:以两支承点的连线作为理想 直线测量第三点相对于此连线的偏 差。测量前,把此装置放在高精度 平尺或平板上,将指示表的示值调 整为零,然后将测量装置放置在被 测面上进行测量,每次移动一个l 距离,读取一个读数。移动时,前 次的测点位置,就是后次测量的前 支承点位置,如此依次逐段测完全 长,最后数据处理,即可求出被测 件的直线度误差。
3
二、精密测量的新发展
• 极高精度测量方法和测量仪器的发展:0.04nm、0.01’’ • 精密在线自动测量技术的发展 • 测量数据的自动采集处理技术的发展
三、精密测量的环境条件
• 恒温条件 • 隔振条件 • 气压、自重、运动加速度和其他环境条件
四、量具和量仪材料的选择
• 根据材料热膨胀系数选择 • 根据材料的稳定性和耐磨性选择
精密和超精密加工技术
华南理工大学 陈松茂 讲师
第五章 精密加工中的测量技术
本章主要提要
2
5.1 精密测量技术概述
一、精密测量的意义
精密测量技术是机械工业发展的基础和先决条件之一。测量精度一般应 比被测件的精度高一数量级。由于有了千分尺类量具,使加工精度达到了 0.01mm,有了测微比较仪,使加工精度达到了1µm左右;有了圆度仪等 精密测量一起,使加工精度达到了0.1µm;有了激光干涉仪,使加工精度 达到了0.01µm。