课程设计 ( 论文 )- 基于 MATLAB的电力系统单相短路故障分析与仿真————————————————————————————————作者:————————————————————————————————日期:电力系统分析课程设计说明书题目:单相接地短路专业:电气工程及其自动化班级:电气 1307姓名:陈欢目录课程设计(论文)任务书 ----------------------- (1)引言 ------------------------------------------------------------------- ( 3)第一章.电力系统短路故障分析------------------------------- ( 4)第二章.电力系统单相短路计算-------------------- ( 5)2.1 简单不对称故障的分析计算---------------------- ( 5)2.1.1. 对称分量法 ------------------- (5)2.2 单相接地短路------------------------------ ( 6)2.2.1. 正序等效定则 ---------------------------- (6)2.2.2. 复合序网 --------------------------------- (6)2.2.3. 单相接地短路分析 --------------------------- (7)第三章.电力系统单相短路时域分析 ---------------- ( 10)3.1 仿真模型的设计与实现------------------------ (10)3.1.1. 实例分析 -------------------------------- (10)3.1.2. 仿真参数 ----------------------------- -- -- -- (11)3.2 仿真结果分析------------------------------- (13)结束语 ----------------------------------------- ( 18)参考文献 --------------------------------------- ( 18)课程设计任务书题目:单相接地短路要求:本课程设计主要是对单相接地短路进行分析计算,并利用Matlab/Simulink软件对其进行仿真,通过仿真结果与计算结果进行比较,进一步研究短路故障的特点。
并验证MATLAB/SIMULINK功能的强大。
引言随着电力工业的发展,电力系统的规模越来越大,在这种情况下,许多大型的电力科研实验很难进行,尤其是电力系统中对设备和人员等危害最大的事故故障,尤其是短路故障,而在分析解决事故故障时要不断的实验,在现实设备中很难实现,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。
考虑这两种情况,寻求一种最接近于电力系统实际运行状况的数字仿真工具十分重要,而 MATLAB软件中的 SIMULINK是用来对动态系统进行建模、仿真和分析的集成开发环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具,为解决具体的工程问题提供了更为快速、准确和简洁的途径。
电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路,动力系统、电力系统和电力网简单示意如图1-1 。
图 1-1 动力系统、电力系统和电力网示意图电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。
所以我们应对单相短路引起足够的重视,对单相短路的研究是有其重要意义的,所以本章重点就是研究单相短路故障在MATLAB中的运用和分析。
第一章.电力系统短路故障分析1.短路产生的原因有很多,主要有以下几个方面:(1) .元件损坏例如绝缘材料的自然老化,设计,安装维护不良所带来的设备缺陷发展成短路等,(2).气象条件恶化例如雷击造成的闪络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌(3). 违规操作,例如运行人员带负荷拉刀闸,线路或设备检修后未拆除接地线就加上电压等;(4). 其他,例如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。
2.短路的危害随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。
短路的危险后果一般有以下的几个方面:(1) .短路故障使短路点附近的支路中出现比正常值大许多倍的电流,由于短路电流的电动力效应,导体间将产生很大的机械应力,可能使导体和它们的支架遭到破坏。
(2).短路电流使设备发热增加,短路持续时间较长时,设备可能过热以致损坏。
(3). 短路时系统电压大幅度下降,对用户影响很大。
系统中最主要的电力负荷是异步电动机,它的电磁转矩同端电压的平方成正比,电压下降时,电动机的电磁转矩显著减小,转速随之下降。
当电压大幅度下降时,电动机甚至可能停转,造成产品报废,设备损坏等严重后果。
( 4) .当短路发生地点离电源不远而持续时间又较长时,并列运行的发电厂可能失去同步,破坏系统稳定,造成大片地区停电。
这是短路故障的最严重后果。
(5) .发生不对称短路时,不平衡电流能产生足够的磁通在邻近的电路内感应出很大的电动势,这对于架设在高压电力线路附近的通讯线路或铁道讯号系统等会产生严重的影响。
3.短路故障分析的内容和目的短路故障分析的主要内容包括故障后电流的计算、短路容量的计算、故障后系统中各点电压的计算以及其他的一些分析和计算,如故障时线路电流与电压之间的相位关系等。
短路电流计算与分析的主要目的在于应用这些计算结果进行继电保护设计和整定值计算,开关电器、串联电抗器、母线、绝缘子等电气设备的设计,制定限制短路电流的措施和稳定性分析等。
二、电力系统单相短路计算2.1 简单不对称故障的分析计算在电力系统的故障中,仅在一处发生不对称短路或断线的故障称为简单不对称故障。
它通常分为两类 , 一类叫横向不对称故障,包括两相短路,单相接地短路以及两相接地短路三种类型。
这种故障发生在系统中某一点的一些相之间或相与地之间,是处于网络三相支路的横向,故称为横向不对称故障,其特点是由电力系统网络中的某一点(节点)和公共参考点(地接点)之间构成故障端口。
该端口一个是高电位点,另一个是零电位点。
另一类故障时发生在网络沿三相支路的纵向,叫纵向不对称故障,它包括一相断相和两相断相两种基本类型,其特点是由电力系统网络中的两个高电位之间构成故障端口。
分析计算不对称故障的方法很多,如对称分量法、 0 分量法以及在abc坐标系统中直接进行计算等。
目前实际中用的最多的和最基本的方法仍是对称分量法,现在就重点介绍这种方法,其他方法只做简略的介绍。
应用对称分量法分析计算简单不对称故障时,对于各序分量的求解一般有两种方法:一种是直接联立求解三序的电动势方程和三个边界条件方程;另一种是借助于复合序网进行求解,即根据不同故障类型所确定的边界条件,将三个序网络进行适当的链接,组成一个复合序网,通过对复合序网的计算,求出电流、电压的各序对称分量。
由于这种方法比较简单,又容易记忆,因此应用较广。
在所讨论的各种不对称故障的分析计算中,求出的各序电流、电压对称分量及各相电流、电压值,一般都是指起始时或稳态时的基频分量。
在工程计算中都假定发电机转子是对称的,也就是忽略了不对称短路时的高次谐波分量。
这种假定对稳极发电机和d 轴及q 轴都装有阻尼绕组的凸极发电机是比较切合实际的。
2.2单相接地短路2.2.1 .正序等效定则由前述分析可知,在求解各种不对称故障时,故障支路的正序电流分量(n)I ka1 可用如下同式表示。
(n)Ea1(4-32 )I ka1Z1 Z (n)式中 E a 1 ------ 故前故障点基准相的运行相电压;Z ( n) ------ 与短路故障类型有关的阻抗(三相短路时, Z (3 ) 0 ;两相短路时, Z(2) Z2 ;两相接地短路时, Z (1 .1)Z2 Z0 ;单Z2 Z0相接地短路时, Z (1) Z2Z0 )。
由式(4-32 )可见,不对称短路故障时故障支路的正序分量电流()I n ka1 ,等于故障点每相加上一个附加阻抗Z (n )后发生三相短路的电流。
这就是正序等效定则。
故障点故障相电流的绝对值(n )与故障支路的正序分量电流( n)成正比,可I k I k1表示为I k (n)m(n )I k1(n)( 4-33 )式中m(n )为与短路类型有关的比例系数,其值见表4-1 。
表 4-1 不同短路故障类型的m(n )故障类型三相短路两相短路两相接地短路单相接地短路(n)1 3x2 x0m 3 1 ( x2 x0 )2 32.2.2 .关于复合序网电力系统某一故障点的正序网络、负序网络及零序网络,属于基本序网,与故障类型、故障相别无关;但由各序网络组合成的复合序网与短路故障的类型、相别有关。
如前述,对同一类型的短路故障,不论发生在哪些相上,以特殊相位基准相所表示的边界条件是不变的,因而复合序网的形式是一样的,也是最为简单的。
换言之,当不对称支路中有两相阻抗相同时,以特殊相为对称分量的基准相作出的复合序网图,在各序网之间可以不用互感器而直接连接起来。
由以上所讨论的三种短路时复合序网图可以看出:单相接地短路时的复合序网是按三个序电压之和等于零和三个序电流相等的边界条件,由三个独立的序网络相串联而成的,所以常称这种故障为串联型故障;两相接地短路(或两相短路)时复合序网是按三个(或两个)序电流之和等于零和三个(或两个)序电压相等的边界条件,由各独立序网络并联而成的,所以称这种故障为并联型故障。
2.2.3单相接地短路分析单相接地短路时的系统接线图如图 4-6 所示。
假定 a 相接地短路,短路处以相量表示的边界条件方程为U ka0;I kb I kc0 (4-14 )转换为对称分量关系(U ka2 U ka0 )U ka U ka1 U ka2 U ka0 0或 Uka11 I kaI ka1 I ka2 I ka03(4-15 )可见,单相接地短路时有零序电压,同时也存在零序电流(在中性点直接接地的系统中)。
由式( 4-15 )可知, A 相接地短路时选基准相为 a 相,故障点 b 相和 c 相的序电压、序电流就没有式( 4-15 )的简单关系。
同样, b 相接地时选基准相位 b 相, c 相接地时选基准相位 c 相,基准相的序电压、序电流具有式( 4-15 )的关系。
故障处以序分量表示的边界条件指明了三序网络在故障端K 处的联接方式。
分析式( 4-15 ),由于I ka1I ka2I ka0,所以正序网、负序网、零序网应串联;同时因 U ka1U ka2 U ka0 0 ,故三个序网串联后应短接,画出复合序网如图 4-7 所示。