数列的通项公式与求和知识点及题型归纳总结知识点精讲一、基本概念(1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.(2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列的通项公式.注:①并非所有的数列都有通项公式;②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式.题型归纳及思路提示题型1 数列通项公式的求解 思路提示常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a②叠乘法:形如1()nn a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a③构造辅助数列:通过变换递推公式,将非等差(等比)数列构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法.利用n S 与n a 的关系求解 形如1(,)()n n n f S S g a -=的关系,求其通项公式,可依据1*1(1)(2,)n n n S n a S S n n N -=⎧=⎨-≥∈⎩,求出n a 观察法观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n-或者1(1)n -- 部分.②考虑各项的变化规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2n 、{}2n与(1)n-有关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式:(1)325374,,,,,,;751381911---L(2)2,22,222,L ,222L ;(3)数列{}n a 中各项为:12,1122,111222,L,{111222n n L L 123个个,L 分析:通过观察,找出所给数列的特征,求出其通项.解析:(1)①原数列中的数的符号一正一负,故摆动数列乘以(1)n-;②绝对值后分子分母无明显的规律,但通过对偶数各项分子分母同乘以2,可使分子出现规律为3,4,5,6,L ,则2(1)34nn n a n +=-+. 解法一:1212021021022(101010)1(110)22(101)1109n n n n n n n a ----=⨯+⨯++=+++-==--L L g g 解法二:原数列⇔2229,99,999999n ⨯⨯⨯L L 123个,即2=(10-1)9nn a (3)121=(10-1)10+(10-1)=(10-1)(10+2)999n n n n n n a g 变式1 将全体正整数排成一个三角形数阵,如下所示,则第n 行(3n ≥)从左到右的第3个数为__________ 12 34 5 67 8 9 10L L L L L L L L L 变式2 观察下列等式:211122ni i n n ==+∑,2321111326ni i n n n ==++∑34321111424ni i n n n ==++∑45431111152330ni i n n n n ==++-∑5654211151621212ni i n n n n ==++-∑67653111111722642ni in n n n n ==++-+∑ L L L L1111101nk k k k k k k i i a n a n a n a n a +-+-==+++++∑L ,可以推测,当*2()k k N ≥∈时,111k a k +=+,12k a =,1_____k a -=,2_____k a -=利用递推公式求通项公式叠加法 数列有形如1()n n a a f n +=+的递推公式,且(1)(2)()f f f n +++L 的和可求,则变形为1()n n a a f n +-=,利用叠加法求和例6.21 已知数列{}n a 满足132n n a a n +=++ *()n N ∈,且12a =,求数列{}n a 的通项公式.分析:式子132n n a a n +=++ *()n N ∈是形如1()n n a a f n +=+的形式,故利用叠加法求和. 解析:132n n a a n +-=+ *()n N ∈可得131n n a a n --=-,(2n ≥) 1234n n a a n ---=-,L L L215a a -=相加可得:232n n n a +=(2n ≥),且12a =也满足上式,故232n n na +=*()n N ∈ 变式1 已知数列{}n a 中,12a =,12n n na a +-=*()n N ∈,求数列{}n a 的通项公式变式2 已知数列{}n a 中,12a =,11ln(1)n n a a n+=++ *()n N ∈,则n a =____A 、2ln n +B 、2(1)ln n n +-C 、2ln n n +D 、1ln n n ++ 变式3 已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-,(2n ≥,0q ≠)(1)设1n n n b a a +=-*()n N ∈,证明:{}n b 是等比数列. (2)求数列{}n a 的通项公式 变式4 数列{}n a 中,12a =,1n n a a cn +=+(c 为常数)*()n N ∈,且123,,a a a 成公比不为1的等比数列.(1)求c 的值;(2)求数列{}n a 的通项公式2、叠乘法 数列有形如1()nn a f n a -=g 的递推公式,且(1)(2)()f f f n g g L g 的积可求,则将递推公式变形为1()nn a f n a -=,利用叠乘法求出通项公式n a 例6.22 已知数列{}n a 中,11a =,12(1)n n na n a +=+,则数列{}n a 的通项公式为( ) A 、2n n B 、12n n - C 、21n n - D 、12n n +分析:数列的递推公式是形如1()nn a f n a -=的形式,故可以利用叠乘法求解. 解析:由12(1)n n na n a +=+变形得112n n a n a n ++=,从而 12(1)n n a na n -=-,L , 2122a a =,故1132112211132()212212n n n n n n a a a a n n na a a a n n ------==--g g L g g g g g L g g (2n ≥) 即112n n a n a -=(2n ≥),所以12n n n a -=(2n ≥,*n N ∈),且11a =满足上式,故12n n na -=(*n N ∈),选B变式1 已知数列{}n a 中,11a =,12n n a n a n++=,求数列{}n a 的通项公式 3、构造辅助数列法 (1)待定系数法形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠)的递推式,可构造1()n n a p a λλ++=+,转化为等比数列求解.也可以与类比式1n n a pa q -=+作差,由11()n n n n a a p a a +--=-,构造{}1n n a a +-为等比数列,然后利用叠加法求通项.例6.23 已知数列{}n a 中,11a =,1112n n a a +=+,求{}n a 的通项公式. 分析:式子1112n n a a +=+形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠),故利用构造法转化. 解析:解法一、设1112n n a a +=+等价于11()2n n a a λλ++=+,得到11122n n a a λ+=-,对应1112n n a a +=+,得到2λ=-故原递推式等价于112(2)2n n a a +-=-,因此数列{}2n a -为首项为1-,公比为12的等比数列,所以112()2n n a --=-,故112()2n n a -=- 解法二、由1112n n a a +=+得 1112n n a a -=+(2n ≥,*n N ∈), 因此111()2n n n n a a a a +--=-(2n ≥,*n N ∈),所以数列{}1n n a a -- 是首项为2112a a -=,公比为12的等比数列.2112111()()()22n n n n a a a a ----=-=2121()2n n n a a ----=L L L L1211()2a a -= 叠加得到:211111()111122()()1()1222212n n n n a a ----=+++==--L 故112()2n n a -=- (*n N ∈)变式1 已知11a =,132n n a a -=+(2n ≥,*n N ∈),求{}n a 的通项公式.例6.24 在数列{}n a 中,12a =,1431n n a a n +=-+ (*n N ∈),求数列{}n a 的通项公式.分析:将原递推公式转化为1(1)4()n n a a n a an λλ++++=++,即1433n n a a an a λ+=++-,比较1431n n a a n +=-+,得1a =-,0λ=,所以数列{}n a n -是首项为1,公比为4的等比数列,故14n n a n --=,即14n n a n -=+ (*n N ∈)2、同除以指数形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的递推式,当p d =时,两边同除以1n d +转化为关于n n a d ⎧⎫⎨⎬⎩⎭的等差数列;当p d ≠时,两边人可以同除以1n d +得111n n n n a a p d d d d ++=+g ,转化为11n np b b d d+=+g ,同类型(1).例6.25 已知数列{}n a 中,11a =-,1132n n n a a --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式.解析:解法一、将1132n n n a a --=+两边同除以3n得11112()3333n n n nn a a ---=+⨯, 则1111121212()()()33333333n n nna a -=+⨯++⨯=-L ,则132n nn a -=- 解法二、将1132n n n a a --=+两边同除以2n得11312222n n n n a a --=+g ,令2nnna b =,得13122n n b b -=+,构造13()2n n b b λλ-+=+,得1λ=,因此数列{}1n b +为等比数列,且111331(1)()22n n n n b b --+=+=,则1312n n n b -=- (*n N ∈), 故13122n n n n a -=-,进而得到132n nn a -=- 评注:一般地,对于形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的数列求通项公式,两边同除以1n d +转化为待定系数法求解;两边同除以1n p+转化为叠加法求解.变式1 在数列{}n a 中,11a =,122nn n a a +=+(1)设12nnn a b -=,试证明:数列{}n b 是等差数列. (2)求数列{}n a 的前n 项的和n S取倒数法 对于1(0)n n n aa a ac b ca +=≠+,取倒数得111n n n n b ca b ca aa a a a++==+g .当a b =时,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;当a b ≠时,令1nnb a =,则1n n b c b b a a+=+g ,可用待定系数法求解. 例6.26 在数列{}n a 中,11a =,122nn na a a +=+,求数列{}n a 的通项公式. 分析:式中含有形如1n a +和n a 的分式形式,故考虑利用倒数变换求其通项公式. 解析:因为1121122n n n n a a a a ++==+,所以11112n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,11111(1)22n n n n a a ++=+-=,故21n a n =+(*n N ∈) 变式1 已知数列{}n a 中首项135a =,1312n n n a a a +=+(*n N ∈),求数列{}n a 的通项公式.变式2 已知数列{}n a 中首项11a =,前n 项的和为n S ,且满足1112n n n S S S --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式. 取对数法 形如1(0,0)k n n n a ca c a +=>>的递推公式,则常常两边取对数转化为等比数列求解.例6.27 已知数列{}n a 中首项13a =,且31n na a += (*n N ∈),则数列的通项n a =_______ 分析:取对数时,常用以1a 为底的对数,便于计算. 解析:因为13a =,所以对31n na a +=两边取以3为底的对数,得到313log 2log n n a a +=,故{}3log n a 是以1为首项,2为公比的等比数列,所以13log 2n n a -=,所以123n na -=(*n N ∈)变式1 已知数列{}n a 中首项110a =,且2110n na a +=g (*n N ∈),求数列的通项n a 已知通项公式n a 与前n 项的和n S 关系求通项问题对于给出关于n a 与n S 的关系式的问题,解决方法包括两个转化方向,在应用时要合理选择.一个方向是转化n S 为n a 的形式,手段是使用类比作差法,使nS 1n S --=n a (2n ≥,*n N ∈),故得到数列{}n a 的相关结论,这种方法适用于数列的前n 项的和的形式相对独立的情形;另一个方向是将n a 转化为n S 1n S --(2n ≥,*n N ∈),先考虑n S 与1n S -的关系式,继而得到数列{}n S 的相关结论,然后使用代入法或者其他方法求解{}n a 的问题,这种情形的解决方法称为转化法,适用于数列的前n 项和的形式不够独立的情况.简而言之,求解n a 与n S 的问题,方法有二,其一称为类比作差法,实质是转化n S 的形式为n a 的形式,适用于n S 的形式独立的情形,如已知142nn S a -=+(2n ≥,*n N ∈);其二称为转化法,实质是转化n a 的形式为n S 的形式,适用于n S 的形式不够独立的情形,如已知2221n n n S a S =-(2n ≥,*n N ∈);不管使用什么方法,都应该注意解题过程中对n 的范围加以跟踪和注意,一般建议在相关步骤后及时加注n 的范围.例6.28 已知正项数列{}n a 中,前n 项的和n S,且满足1n a =+,求数列{}n a 的通项公式.解析:由已知,可得24(1)n n S a =+ ①类比得到2114(1)n n S a --=+(2n ≥,*n N ∈)②式①-式②得 221114422n n n n n n S S a a a a ----=-+-即1112()()()n n n n n n a a a a a a ---+=+-所以11()(2)0n n n n a a a a --+--=,又因为10n n a a -+>,故120n n a a ---=(2n ≥,*n N ∈),因此数列{}n a 为等差数列,且首项为1,公比为2 故21na n =- (*n N ∈)评注:本题是关于n a 与n S 的关系式问题中第一个方向的典型题目,本题的闪光点是未给出n S 的直接形式,需要考生稍加变形,转化为24(1)nn S a =+后,才可使求解方向变得更为明朗.变式1 已知数列{}n a 的前n 项的和n S ,11a =,142n n S a +=+(*n N ∈)(1)设12n n n b a a +=-,求n b ;(2)设112nn nc a a +=-,求数列{}n c 的前n 项和n T ;(3)设2n nna d =,求2010d例6.29 已知数列{}n a 中,0n a >,且对于任意正整数n 有11()2n n nS a a =+,求数列{}n a 的通项公式分析:已知n a 与n S 的关系,求数列的通项公式利用n a =n S 1n S --(2n ≥,*n N ∈)求解,将试题右边的含n a 的式子换成n S 1n S --来处理.解析:当1n =时,111111()2S a a a ==+,及0n a >,解得 11a =当2n ≥时,由11()2n n n S a a =+得1111()2n n n n n S S S S S --=-+-,变形整理得2211n n S S --=,数列{}2n S 是等差数列,首项为1, 公差为1 故21(1)1nS n n =+-⨯=,所以n S =1n =适合上式,故n S =(*n N ∈)故当2n ≥时,n a =n S 1n S --= 1n =适合上式,故na =*n N ∈)变式1 已知数列{}n a 中,0n a ≠(1)n ≥,112a =,前n 项和n S 满足2221n n n S a S =-(2n ≥,*n N ∈)(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列{}n a 的通项公式变式2 设数列{}n a是正数组成的数列,且有*2)n a n N +=∈,求数列{}n a 的通项公式.例6.30 设数列{}n a 的前n 项的和为n S ,已知111,42n n a S a +==+. (1)设12n n n b a a +=-,证明:数列{}n b 是等比数列. (2)求数列{}n a 的通项公式.解析 (1)在142n n S a +=+中,令1n =,得2142S a =+,即12142a a a +=+,故25a =,由142n n S a +=+知2142n n S a ++=+,两式相减得2144n n n a a a ++=-,即211224n n n n a a a a +++-=-,故12n n b b +=,且121230b a a =-=≠,即{}n b 是以2为公比的等比数列.(2)由2142S a =+且11a =知26S =,故2215a S a =-=,所以212523a a -=-=,即有111232n n n b b --==g g ,所以11232n n n a a -+-=g ,于是113224n n n n a a ++-=,因此数列{}2n na 是首项为12,公差为34的等差数列.所以1331(1)22444n na n n =+-⨯=-,故2(31)2n n a n -=-g . 变式1 已知数列{}n a 的前n 项之和为n S ,且*585()n n S n a n N =--∈. (1)证明:数列{1}n a -是等比数列;(2)求数列{}n S 的通项公式,请指出n 为何值时,n S 取得最小值,并说明理由.变式2 已知数列{}n a 的前n 项和为n S ,且满足2*24()n n S a n n n N =+-∈. (1)写出数列{}n a 的前3项123,,a a a ; (2)求证:数列{21}n a n -+为等比数列; (3)求n S .变式3 设数列{}n a 的前n 项和为n S .已知2*112121,()33n n S a a n n n N n +==---∈. (1)求2a 的值;(2)求数列{}n a 的通项公式.题型2 数列的求和 思路提示求数列前n 项和的常见方法如下: (1)通项分析法.(2)公式法:对于等差、等比数列,直接利用前n 项和公式.(3)错位相减法:数列的通项公式为n n a b g 或n nab 的形式,其中{}n a 为等差数列,{}n b 为等比数列.(4)分组求和法:数列的通项公式为n n a b +的形式,其中{}n a 和{}n b 满足不同的求和公式.常见于{}n a 为等差数列,{}n b 为等比数列或者{}n a 与{}n b 分别是数列的奇数项和偶数项,并满足不同的规律. (5)裂项相消法:将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. (6)倒序相加:应用于等差数列或转化为等差数列的数列求和. 一、通项分析法例6.31 求数列2211,12,122,,1222,n -+++++++L L L 的前n 项的和. 解析 数列的通项21122221n n n a -=++++=-L ,即*21()n n a n N =-∈, 所以数列的前n 项的和为121212(12)(21)(21)(21)(222)2212n nnn n S n n n +-=-+-++-=+++-=-=---L L即1*22()n n S n n N +=--∈.评注 先分析数列通项的特点,再选择合适的方法求和是求数列的前n 项和问题应该强化的意识. 变式1 求数列9,99,999,L ,999nL 123的前n 项和. 二、公式法利用等差、等比数列的前n 项和公式求和.例6.32 已知等差数列{}n a 中,259,21,2n a n a a b ===,求数列{}n b 的前n 项和n S .分析 根据数列{}n a 为等差数列,259,21a a ==,求出数列{}n a 的通项, 从而知数列{}n b 为等比数列,利用等比数列的求和公式求n S .解析 设等差数列{}n a 的首项为1a ,公差为d ,依题意得119421a d a d +=⎧⎨+=⎩,解得154a d =⎧⎨=⎩.数列{}n a 的通项公式为41n a n =+,由2na nb =得412n n b +=,因为454141222n n n n b b +++==,所以数列{}n b 是首项为512b =,公比为42q =的等比数列.于是得数列{}n b 的前n 项和54442[1(2)]32(21)1215n n n S --==-. 评注 针对数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式求解.变式1 如图6-4所示,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在点1Q 处的切线与x 轴交于点2P .再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1122,;,;;,n n P Q P Q P Q L ,记点k P 的坐标为(,0)(1,2,,)k x k n =L .(1)试求k x 与1k x -的关系(2)k n ≤≤; (2)求1122||||||n n PQ P Q P Q +++L .三、错位相减法 求数列{n n a b g }和{nna b }的前n 项和,数列{}n a , {}n b 分别为等差与等比数列.求和时,在已知求和式的两边乘以等比数列公比q 后,与原数列的和作差,即n n S qS -,然后求n S 即可.例6.33 已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(1)求数列{}n a , {}n b 的通项公式;(2)设n n n c a b =g ,数列{}n c 的前n 项和为n T ,求n T . 解析 (1)22n n S a =-,*1122(2,)n n S a n n N --=-≥∈上两式相减得1122n n n n S S a a ---=-,得122n n n a a a -=-,故12n n a a -=, 令1*11111,22,2,2()n n n n a a a a a q n N -==-===∈.点1(,)n n P b b +在直线20x y -+=上,则120n n b b +-+=,12n n b b +=+, 则{}n b 是首项为1,公差为2的等差数列,*1(1)221()n b b n n n N =+-⨯=-∈.(2)(21)2n n n n c a b n ==-gg , 121232(21)2(1)n n T n =⨯+⨯++-⨯L 23`21232(21)2(2)n n T n +=⨯+⨯++-⨯L由(1)-(2)得112118(12)22222(21)22(21)212n nn n n T n n -++--=+⨯++⨯--⨯=+--⨯-L12(32)6n n +=--,故1(23)26n n T n +=-+.评注 由于结果的复杂性,自己可以通过代入1,2n =等验证,111222,T a b T a b ==等以确保所求结果的准确性. 变式1 已知数列{}n a 的前n 项和21(*)2n S n kn k N =-+∈,且n S 的最大值为8.(1)确定常数k ,并求n a ; (2)求数列92{}2nna -的前n 项和n T . 变式2已知{}n a 是等差数列,其前n 项和为n S ,{}nb 是等比数列,且1144442,27,10a b a b S b ==+=-=. (1)求数列{}n a 与{}n b 的通项公式;(2)记1121(*)n n n n T a b a b a b n N -=+++∈L ,证明:12210(*)n n n T a b n N +=-+∈.四、分组求和法对于既非等差又非等比数列的一类数列,若将数列的项进行适当地拆分,可分成等差、等比或常数列,然后求和.例6.34 在数列{}n a 中11111,(1)2n n n n a a a n ++==++.(1)设nn a b n=,证明1{}n n b b +-为等比数列; (2)求数列{}n a 的前n 项和n S . 解析 (1)由已知得1111(1)12112n nn n n n n a a a n b n n n +++++===+++,即112n n nb b +=+, 故112n n nb b +-=,且111(2,*)2n n n n b b n n N b b +--=≥∈-,因此1{}n n b b +-是公比为12的等比数列. (2)由(1)知当2n ≥时,1121111,,22n n n b b b b ---=-=L ,叠加得 11122111122n n n n n b b b b b b -----+-++-=++L L , 所以111112211212n n n b b ---==--,得11112n n b b -=+-,1n =时也成立,又111b a ==,所以112(*)2n n b n N -=-∈,得12(*)2n nn na nb n n N -==-∈. 12123(21)(4)(6)(2)24223(2462)(1)222n n n nS n nn --=-+-+-++-=++++-++++L L L令21231222n n nT -=++++L , 23111231222222n n n n nT --=+++++L , 故2111(1)11112212(1)2122222222212n n n n n n n nT nn n n --+=++++-=-=--=--g L ,故1242n n nT -+=-,又2462(1)n n n ++++=+L , 所以12(1)42n n nS n n -+=++-. 变式 1 已知数列{}n a 中的相邻两项212,k k a a -是关于x 的方程2(32)320k k x k x k -++=g 的两个根,且212(1,2,3,)k k a a k -≤=L .(1)求1357,,,a a a a ;(2)求数列{}n a 的前2n 项和2n S .变式2 等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表6-1的同一列.表6-1第1列 第2列 第3列 第1行 3 2 10 第2行 6 4 14 第3行 9 8 18(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .五、裂项相消法将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. 常用的裂项相消变换有: 1.分式裂项1111()()n n p p n n p=-++;1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++.2.根式裂项1p=.3.对数式裂项lg lg()lgn pn p nn+=+-.4.指数式裂项1()(1)1n n naaq q q qq+=-≠-;11111()(1)(1)(1)111nn n n nqqq q q q q++=-≠-----.使用裂项法,要注意正负项相消时消去了哪些项,保留了哪些项;应注意到,由于数列{}na中每一项na均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样的多,切不可漏写未被消去的项.未被消去的项有前后对称的特点,即经过裂项后有“对称剩项”的特征.另外从实质上看,正负项相消是裂项法的根源和目的.例6.35 求数列1111,,,,,132435(2)n n⨯⨯⨯+L L的前n项和nS.解析先分析通项公式1111()(2)22nan n n n==-++,所以1111111111311[(1)()()](1)(*)23242221242224 nS n Nn n n n n n=-+-++-=+--=--∈+++++L评注如果数列的通项公式可以写成()()f n p f n+-的形式,常采用裂项求和的方法.特别地,当数列形如11{}n na a+,其中{}na是等差数列时,可尝试使用此法.变式1 已知数列1111,,,,,12123123n+++++++L LL,求它的前n项和nS.例6.36已知等差数列{}na满足3577,26a a a=+=,{}na的前n项和nS.(1)求na及nS;(2)令21(*)1nnb n Na=∈-,求数列{}nb的前n项和nT.解析(1)设{}na的首项为1a,公差为d,由已知可得111273210262a d aa d d+==⎧⎧⇒⎨⎨+==⎩⎩.所以1(1)21(*)na a n d n n N=+-=+∈,1()(2)(*)2nna a nS n n n N+==+∈.(2)因为21na n=+,所以214(1)na n n-=+,因此1111()4(1)41nbn n n n==-++,故1211111111(1)(1)(*)42231414(1)n n nT b b b n N n n n n =+++=-+-++-=-=∈+++L L .故数列{}n b 的前n 项和4(1)n nT n =+.评注 采用裂项相消法求解数列的前n 项和,消项时要注意相消的规律,可将前几项和表示出来,归纳规律.一般来说,先注意项数,如果是每两项作为一组相消,则最终剩余项数为偶数项;再看大小,若前面保留的是分母最小的若干项,则最后必会保留分母最大的若干项. 变式1 设正项数列{}n a 前n 项和n S 满足21(1)4n n S a =+.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=g ,求数列{}n b 的前n 项和n T .变式2 在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令lg ,1n n a T n =≥. (1)求数列{}n a 的通项公式;(2)设1tan tan n n n b a a +=g 求数列{}n b 的前n 项和n S .六、倒序相加法将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法).例6.37设()f x (7)(6)(5)(0)(8)f f f f f -+-+-++++L L 的值.解析因为1()(1)22x xf x f x +-==+=+x =+==所以(7)(6)(5)(0)(8)8f f f f f -+-+-++++==L L . 变式1 函数121()(0),,4xf x m x x R m =>∈+,当121x x +=时,121()()2f x f x +=. (1)求m 的值;(2)已知数列{}n a 满足121(0)()()()(1)n n a f f f f f n n n-=+++++L ,求n a ;(3)若12n n S a a a =+++L ,求n S .变式2 已知函数()f x 对任意x R ∈都有1()(1)2f x f x +-=.(1)求1()2f 的值;(2)若数列{}n a 满足121(0)()()()()(*)n n na f f f f f n N n n n n-=+++++∈L ,数列{}n a 是等差数列吗?试证明之;(3)设4(*)41n n b n N a =∈-,1n n n c b b +=,求数列{}n c 的前n 项和n T .变式3 已知数列{}n a 是首项为1,公差为2的等差数列,求0121231n n nn n n n S C a C a C a C a +=++++L .最有效训练题1.L ,则 )A .第18项B .第19项C .第17项D .第20项2.已知各项均不为零的数列{}n a ,定义向量1(,),(,1),*n n n n c a a b n n n N +==+∈u u r u u r,则下列命题为真命题的是( )A .若对任意的*n N ∈,总有//n n c b u u r u u r 成立,则数列{}n a 是等差数列B .若对任意的*n N ∈,总有//n n c b u u r u u r成立,则数列{}n a 是等比数列 C .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等差数列 D .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等比数列3.设{}n a 是单调递减的等差数列,前3项的和是15,前3项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .74.已知数列{}n a 满足111n n a a +=-,若112a =,则2011a =( )A .12B .2C .-1D .1 5.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S ,若对*n N ∀∈,有23n n S S <,则q 的取值范围是( )A .(0,1]B .(0,2)C .[1,2)D .(0)6.对于数列{}n a ,如果*k N ∃∈及12,,,k R λλλ∈L ,使1122n k n k n k k n a a a a λλλ++-+-=+++L 成立,其中*n N ∈,则称{}n a 为k 阶递推数列,给出下列三个结论: ①若{}n a 为等比数列,则是1阶递推数列; ②若{}n a 为等差数列,则是2阶递推数列;③若数列{}n a 的通项公式为2n a n =,则是3阶递推数列. 其中正确结论的个数是( )A .0B .1C .2D .37.根据数列的前几项,写出数列的一个通项公式: (1)-1,7,-13,19,L ,n a =_____________; (2)0.8,0.88,0.888,L ,n a =_____________; (3)115132961,,,,,,248163264--L ,n a =_____________;(4)0,1,0,1,L ,n a =_____________. 8.若数列{}n a 满足111n n d a a +-=(*n N ∈,d 为常数),则称{}n a 为调和数列.已知数列1{}nx 为调和数列,且1220200x x x +++=L ,则56x x +=__________.9.在数列{}n a 中,121,2a a ==,且21(1)(*)n n n a a n N +-=+-∈,则100S =__________. 10.根据下列条件,确定数列{}n a 的通项公式. (1)已知数列{}n a 的前n 项和2231n S n n =-+; (2)已知数列{}n a 的满足132n n n a a +=++,且12a =; (3)1111,(2,*)n n n a a a n n N n--==≥∈; (4)在数列{}n a 中,111,2(*)n n n a a a n N +==+∈; (5)在数列{}n a 中,113,21(*)n n a a a n N +==+∈;(6)在数列{}n a 中,2111,2(*)n nn a a a a n N +==+∈. 11.设数列{}n a 的前n 项和为n S ,点(,)(*)nS n n N n∈均在函数32y x =-的图像上. (1)求数列{}n a 的通项公式; (2)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n mT <对所有*n N ∈都成立的最小正整数m .12. 已知数列{}n a 的首项1122,(*)31n n n a a a n N a +==∈+(1)证明:数列1{1}na -是等比数列; (2)求数列{}nna 的前n 项和n S .。