空气过滤器培训教材1.空气过滤器主要参数净化空调通风系统过滤器尺寸⑴空调通风系统中最常用的过滤器; 无论是框式、袋式或W式,名义尺寸通常为610mm X 610mm, 实际上就是发达国家24″X 24″的规格,对应的外框尺寸则因生产厂不同单边分别为592mm至597mm .⑵净化系统末端用的高效过滤器, 发达国家始终以610mm ( 24″)为主,其派生尺寸为203mm、305mm、762mm、915mm、1219mm、1524mm、1829mm(8″、12″、30″、36″、48″、60″、72″).⑶国内常用的无隔板高效过滤器尺寸基本上与国外的相同, 有隔板高效过滤器的常用尺寸有484mm X 484mm X 220mm (GB-01型) 和630mm X 630mm X 220mm (GB-03型), 这里的GB与常说的“国标”无关, 其中G是代表过滤器, B是代表玻璃纤维.1.2 过滤器的额定风量⑴过滤器的额定风量是该过滤器可以通过的最大风量, 它取决于过滤材料的面积(不是过滤器的面积, 过滤材料的面积经常是过滤器迎风面积的数十倍), 如通过过滤材料的气流速度相同, 过滤材料的面积大, 通过的风量也大. 目前同样结构过滤器的额定风量均取决于过滤器的尺寸大小.⑵同种结构、同样滤料的过滤器,当终阻力确定时,过滤面积增加50%,过滤器的使用寿命会延长70%-80%,当过滤面积增加一倍时,过滤器的使用寿命会是原来的三倍左右.1.3 过滤器的初阻力和终阻力⑴过滤器对气流形成阻力, 过滤器的积灰随着使用时间的增加而增加,当过滤器的阻力增加到某一规定值时, 过滤器就报废.⑵新过滤器的阻力称“初阻力”,对应过滤器报废时的阻力值称作“终阻力”,在某些过滤器的样本上有“终阻力”参数, 空调工程师也可以根据现场情况改变产品原设计的终阻力值.大多数情况下, 使用现场的过滤器终阻力是初阻力的2-4 倍.⑶下表给出了各种过滤效率规格的建议终阻力值.终阻力建议值⑷低效率过滤器常使用直径≥10μm的粗纤维滤料, 由于纤维间空隙大,过大的阻力有可能将过滤器上的积灰吹落, 此时, 阻力不再增高, 但过滤效率为零. 因此, 要严格限制G4以下过滤器的终止阻力值.⑸为保证各级过滤器的有效使用, 每个过滤段建议要安装阻力监测装置, 最便宜的阻力监测装置是U形管压差计. 斜管压差计比U形管压差计准确度高, 外形也更美观. 指针式压差表档次和价格都高一些.⑹自控系统对压差的控制一般都采用差压变送器, 差压变送器可以将阻力变成电流或电压信号输送给控制系统, 如加上差压开关, 就可以组成终阻力报警装置.1.4 过滤效率⑴空气过滤器的“过滤效率”是指通过该过滤器被捕捉的粉尘量与原空气含尘量之比:过滤器捕集粉尘量下游空气含尘量过滤效率 = —————————— = 1 - ————————上游空气含尘量上游空气含尘量⑵过滤效率的确定是与测试方法分不开的, 对同一只过滤器采用不同的测试方法进行测试, 得出的效率值就不一样. 所以, 离开测试方法,过滤效率就无从谈起.⑶不同效率、不同国家、不同厂商所使用的测试方法不尽相同. 如果你一定要知道具体的效率数据, 请别忘记规定具体的试验方法和计算效率的方法.1.5 容尘量⑴过滤器的容尘量是指过滤器在特定试验条件下, 容纳特定试验粉尘的重量. 这里的特定是指:A. 标准试验风洞, 以及相关试验与测量设备;B.比实际大气尘颗粒大得多的标准“道路尘”*;* 欧美标准规定的试验粉尘俗称ASHRAE尘, 其成份是AC细灰中混入规定比例的细炭黑和短纤维, 所谓AC细灰就是美国亚利桑那荒漠地带某特定地点的浮尘(Arizona Road Dust).日本规定用自己的“关东亚黏土”,中国曾规定用黄土高原的浮尘.C. 委托方与试验方商定, 或标准规定的试验方法与计算方法;D. 委托方与试验方商定的终止试验条件.⑵容尘量并非过滤器报废时容纳大气粉尘的重量.⑶容尘量与过滤器实际容纳粉尘的重量没有直接对应关系, 孤立的容尘量数据对用户没有任何意义.只有试验条件和试验粉尘相同时,才能比较过滤器的使用寿命.⑷在做容尘量测量时, 要对过滤器进行破坏性发尘试验.2.过滤器分类中国效率分级⑴一般通风用过滤器有两项国家标准,这两项标准均按新过滤器的计数法效率分级.⑵GB12218-89标准分五级, 具体要求见下表:⑶GB/T14295-93标准分四级, 具体要求见下表:⑷中国现有的标准计数法与国外计数法的主要差别是:A. 国内仅测量新过滤器效率,国外测量发尘试验全过程的过滤器效率;B.国内测量大于某粒径全部粒子的过滤效率, 国外测量某粒径段粒子的效率;C. 国外计数测量时使用标准粉尘, 国内使用大气粉尘.⑸高效过滤器分类的国家标准GB13354-92规定:A. 按GB6165规定的钠焰法测试, 其效率≥99.9%的过滤器, 称为高效过滤器.B. 对粒径≥0.1μm粒子, 其过滤效率≥99.999%的过滤器, 称为超高效过滤器.(也有称做“甚高效”过滤器)2.2 欧洲效率分级⑴欧洲现行过滤器效率分级请见下表:* 当试验终阻力为450Pa时, 对0.4μm处的平均计数效率值相当于比色法效率值. 由于是发尘试验,平均计数效率值高于中国现行方法测出的初始效率.欧洲标准化协会新的计数法标准将取代原有EN779中规定的比色法.⑵欧洲通风协会过滤器效率旧分级请见下表:* 欧洲通风协会规定的计重法和比色法照搬了美国ASHRAE 52.1标准,钠焰法根据的是英国标准.2.3 美国效率规格⑴ASHRAE (美国采暖、制冷与空调工程师协会American Society ofHeating Refrigeration and Air Conditioning Engineers) 52.2 –1999规格:⑵IEST [(美国)环境科学技术学会Institute of EnvironmentalSciences and Technology) 对高效过滤器分类IES – RP – CC001.3 - 1993:A类(Type A): 额定风量下DOP试验, 对0.3μm粒子的过滤效率≥99.97%.B类(Type B): 满足A类性能,并经过100% 与20% 额定风量的比较检漏试验.C类(Type C): 0.3μm DOP试验过滤效率≥99.99%, 并经过多分散相DOP扫描试验.D类(Type D): 0.3μm DOP试验过滤效率≥99.999%, 并经过多分散相DOP扫描试验.E类(Type E): 满足美国军用与原子能标准MIL - F-51068, 用于过滤毒物、核污染物等危险粉尘的过滤器, 0.3μm DOP试验过滤效率≥99.97%.F类(Type F): 粒子计数扫描试验, 对0.1μm - 0.2μm的过滤效率≥99.999%.⑶IEST [(美国)环境科学技术学会Institute of EnvironmentalSciences and Technology) 对过滤器结构与防火分类IES –RP –CC001.3 - 1993:第一类(Grade 1): 满足美国军用与原子能标准MIL - F-51068, 不燃结构, 能承受恶劣的环境, 结构坚固. 主要用于军事、原子能及其他重要工业.第二类(Grade 2): 阻燃结构, 经耐水试验、耐低温试验及军用与原子能标准MIL - F-51068中的部份试验. 满足美国UL – 586标准的试验(火焰试验).第三类(Grade 3): 符合UL –900标准中的一级, 即遇明火不燃烧,或散发微量烟雾.第四类(Grade 4): 符合UL – 900标准中的二级, 即遇明火轻微燃烧,或散发有限烟雾.第五类(Grade 5): 阻燃材料结构, 无助燃物质, 遇火仅产生少量烟雾或不产生烟雾. 用于洁净室顶送风或侧送风处的空气过滤第六类(Grade 6): 用于无特殊防火要求和不十分重要的场所.2.4 过滤器效率规格比较为了方便对比可能面对的几种效率规格, 我国研究过滤器专家蔡杰博士专门设计了一张效率比较图, 蔡博士声明;该比较图仅供参考, 如果希望准确, 则应参照各种试验方法和效率规定的定义.3. 过滤器过滤效率测试方法3.1 计重法Arrestance⑴计重法一般用于测量中央空调系统中作为预过滤的低效率过滤器.⑵将过滤器装在标准试验风洞内, 上风端连续发尘, 每隔一段时间, 测量穿过过滤器的粉尘重量(或过滤器上的集尘量),由此得到过滤器在该阶段按粉尘重量计算的过滤效率. 最终的计重效率是各试验阶段效率依发尘量的加权平均值.⑶试验用的尘源为大粒径、高浓度标准粉尘.各国使用的粉尘是不相同的.⑷计重法试验的终止试验条件为: 和用户约定的终阻力值, 或试验者自己规定的终阻力值. 终阻力值不同, 计重效率就不同.⑸计重法试验是破坏性试验, 不能用作产品生产中的性能检验.⑹计重法试验的相关标准:美国标准: ANSI/ASHRAE 52.1 - 1992英国标准: EN 779 - 1993中国标准: GB 12218 - 19893.2 比色法Dust - spot⑴比色法用于测量效率较高的一般通风用过滤器.中央空调系统中的大部份过滤器属于这种过滤器.⑵试验台与试验粉尘与计重法相同.⑶用装有高效滤纸的采样头在过滤器前后采样.每经过一段发尘试验,测量不发尘状态下过滤器前后采样点采样头上高效滤纸的通光量, 通过比较滤纸通光量的差别, 用规定计算方法得出所谓“过滤效率”. 最终的比色效率是各试验阶段效率依发尘量的加权平均值.⑷终止试验条件与计重法相似: 和用户约定的终阻力值, 或试验者自己规定的终阻力值. 终阻力值不同, 比色效率就不同.⑸比色法试验是破坏性试验, 不能用作产品生产中的性能检验.⑹计重法试验的相关标准:美国标准: ANSI/ASHRAE 52.1 - 1992英国标准: EN 779 - 1993中国从来没有使用过比色法, 国内也没有比色法试验台.⑺比色法曾经是国外通行的试验方法, 这种方法正逐渐被计数法所取代.3.3 大气尘计数法⑴中国对一般用通风过滤器的效率分级是建立在大气尘计数法基础上的. 中国的计数法标准早于欧美, 但应为它是建立在20世纪80年代国产计数器和相应测量水平面上, 所以方法比较粗糙..⑵尘源为大气中的“大气尘”.⑶测量粉尘颗粒数的仪器为普通光学或激光粒子计数器.⑷大气尘计数法的效率值只代表新过滤器的初始效率.⑸标准: GB 12218 - 19893.4 计数法Particle Efficiency⑴试验台和发尘用的高浓度试验粉尘与计重法和比色法所用的类似.⑵粉尘的“量”是微小粒径段颗粒物的个数, 测量粉尘颗粒数的仪器为激光粒子计数器.⑶试验过程中, 在每次发尘试验的之前和之后, 进行计数测量,并计算对各种粒径颗粒的过滤效率. 当达到终止试验的条件时停止试验. 过滤器的典型效率值是在规定粒径范围内,各个阶段瞬时效率依发尘量的加权平均值.⑷计数效率不再是单一数据, 而是一条沿不同粒径的过滤效率曲线. 欧洲的试验表明, 当试验的终阻力为450Pa时, 0.4μm处的计数效率值与传统比色法的效率值接近.⑸欧洲标准规定, 计数测量时使用特定的多分散用液滴, 如用Laskin喷管吹出的DENS喷雾,或使用聚苯乙烯乳胶球(Latex).**聚苯乙烯乳胶球(Latex)经常用作标定粒子计数器的标准粒子.⑹美国标准规定, 计数测量使用漂白粉. 针对不同挡次的过滤器测量不同粒径范围的效率值, 其试验终阻力也因效率档次不同而不同.⑺完整的计数效率测试是破坏性试验, 不能用于产品的日常检验. 制造厂可省去发尘过程, 仅测量过滤器的初始计数效率.⑻计数法试验的相关标准:美国标准: ASHRAE 52.2 - 1999欧洲标准: PREN 779(CEN草案, 1999年, 该标准将取代EN779:1993年规定的比色法)⑼比色法曾经是国外通行的试验方法, 这种方法正逐渐被计数法所取代.3.5 油雾法Oil Mist⑴油雾法曾在前苏联、联邦德国和中国通用, 现国外已经停止使用, 中国也祗有部份滤材生产厂使用.⑵尘源为油雾. 德国规定用石蜡油, 油雾粒径0.3μm - 0.5μm.中国标准对油的种类未做具体规定, 祗规定油雾平均直径为0.28μm -0.34μm.“量”是微小粒径段颗粒物的个数, 测量粉尘颗粒数的仪器为激光粒子计数器.⑶试验过程中, 测试的“量”为含油雾空气的浊度. 测试仪器为浊度计.以气样的浊度差别来判定过滤器(或过滤材料)对油雾颗粒的过滤效率.⑷相关标准:中国标准: GB 6165 – 85德国标准: DIN 24184 – 19903.6 钠焰法Sodium Flame⑴钠焰法起源于英国, 20世纪70至90年代在欧洲部份国家通行,随着扫描法的普及, 国际上已经不再使用钠焰法.现中国仍有相当一部份高效过滤器的生产厂家在使用钠焰法.⑵尘源单分散相氯化钠(Nacl)盐雾. 测试的“量”为含盐雾时氢气火焰的亮度. 主要仪器为光度计.⑶氯化钠溶液雾化后的气溶胶其粒径在0.2μm - 2.0μm, 中值粒径约为0.6μm, 对国内现有装置的实测结果为0.50μm.⑷测试过程中, 盐水在压缩空气的搅动下飞溅, 经干燥形成的微小测试盐雾进入风道. 在过滤器前后分别采样, 含盐雾的气样使氢气火焰的颜色变蓝, 亮度增加. 以火焰亮度来判断空气的盐雾浓度, 并以此来确定过滤器对盐碱的过滤效率.⑸相关标准:中国标准: GB 6165 – 85英国标准: BS 3928 – 1969欧洲标准: EuroventS 4/43.7 DOP法Dioctyl Phthalate⑴DOP的中文译名为<邻苯二甲酸二辛酯>, 是塑料工业一种常用的增塑剂, 也是一种常见的清洗剂. 用0.3μm的DOP液滴做尘源测试高效过滤器过滤效率的方法称为DOP法, 得出的过滤效率称为DOP效率. 这种测试方法起源于美国, 在国际上通行, 中国从未实行过.⑵将DOP液体加热成蒸汽, 蒸气在特定条件下冷凝成微小液滴,去掉过大和过小的液滴后留下0.3μm*的作为尘源.这种方法也称为“热DOP法”.*规定使用0.3μm尘粒因为早期人们认为过滤器对0.3μm的粉尘最难过滤.⑶DOP液体用压缩空气鼓气泡, 通过Laskin喷管飞溅产生雾态人工尘的称为“冷DOP法”. 冷DOP法产生的是多分散项DOP粉尘, 粒径在0.1μm - 1.0μm, ≥0.35μm的占90%以上, 在对通风过滤器测试和对过滤器进行扫描测试时, 人们经常使用冷DOP法.⑷利用多分散的DOP测得的过滤器效率比用单分散的为高. 两者现尚无转换关系可循.⑸雾状DOP 0.3μm微小液滴进入风道, 测量过滤器前后气样的浊度, 可确定过滤器对0.3μm粉尘的过滤效率.⑹DOP用于高效过滤器的测试已经有近40年的历史, 近几年来怀疑其所含环苯是致癌物质, 现改用单分散的DOS DEHS. 这些物质对IC及盘片驱动器的生产有害, 因此现常用粒径在0.1μm - 1.0μm的单分散聚苯乙烯乳胶球(SPL S).⑺相关标准:美国军用标准: MIL - STD - 2823.8 计数扫描法(MPPS法) Most Penetratiable Particulate Size⑴目前国际上高效过滤器的主流试验方法.⑵用计数器对过滤器的整个出风面进行连续扫描检验, 计数器给出每一点粉尘的个数和粒径. 这种方法不仅能测量过滤器的平均效率, 还可以比较各点的局部效率.⑶MPPS法顾名思义是要测量出最容易穿透的粉尘粒径的过滤效率. 欧洲人的经验表明, 最容易穿透的粉尘粒径在0.1μm -0.25μm 之间的某一点, 美国标准干脆规定只测量0.1μm -0.2μm 区间.⑷试验中使用的尘源是Laskin喷管产生的多分散相DOP液滴,或确定粒径的固体粉尘.⑸若测试中使用的是凝结核计数器,则必须采用粒径已知的单分散相试验粉尘.⑹MPPS法是测试高效过滤器最严格的方法, 用这种方法替代其他各种传统的测试方法是必然的趋势.⑺相关标准:美国标准: IES - RP – CC007.1 - 1992欧洲标准: EN 1882.1 – 1882.5 – 1998 - 20003.9 光度计扫描⑴光度计扫描检漏的方法没有相应标准可依.⑵用光度计对过滤器的整个出风面进行扫描检漏. 这种扫描方法能快速、准确地找到过滤器的漏点. 由于尘源一般为多分散相, 光度计本身又不能确定粉尘粒径, 所以这种扫描法给出的“过滤效率”没有什么实际意义.⑶光度计扫描法对生产过程的质量控制很有效, 所用的测试设备又比较简单, 有些生产厂认为只要对滤料的品质和规格严格控制, 过滤器的效率就已经确定了. 因此仅进行以检漏为目的的光度计扫描就可以保证过滤器质量. 但这种理念用户不太容易接受.3.10 荧光法Uranine⑴只有法国使用, 目前仅限于对部份核工业过滤器的测试. 实际上法国过滤器厂过去最常使用的是DOP法, 而不是自己规定的荧光法, 现在法国人又将欧洲标准化协会的计数法定为国家标准, 荧光法更少使用了.⑵荧光法的试验尘源为喷雾器产生的荧光素钠粉尘. 根据法国标准, 发尘装置产生的粉尘粒径的计数平均值为0.08μm, 粒径的体积平均值为0.15μm.⑶试验过程中在过滤器前后采样, 然后用水溶解采样滤纸上的荧光素钠, 再测量含荧光素钠水溶液在特定条件下的荧光亮度, 这一亮度间接地反映出粉尘的重量. 以过滤器前后样品的荧光亮度差别来判断过滤器的效率.⑷相关标准:法国标准: NF X44 - 011 - 19723.10 其他检方法⑴变风量检漏.如果降低风量后过滤器效率降低, 则肯定有漏点.变风量检查只能判断过滤器是否有漏, 但不能对漏点定位.⑵发烟检漏.在暗室中, 在过滤器上游发烟, 用一束强光去照射过滤器的出风面, 当过滤器有漏点时, 可以明显看出漏点处有一缕青烟. 这种方法可以准确地对漏点定位.⑶无污染检验. 有些用户担心试验用的粉尘污染过滤器, 他们经常要求过滤器制造厂家使用他们认为安全的固体颗粒粉尘;有些制药厂要求直接使用室外大气尘.4. 过滤器的应用4.1 合理确定各级过滤器效率⑴通常情况下, 最末一级过滤器决定空气的净化程度.⑵上游的各级过滤器祗起保护作用, 统称“预过滤器”.⑶应妥善配置各级过滤器的效率. 若相邻两级过滤器的效率规格相差太大, 则前一级起不到保护后一级的作用; 若两级相差不大, 则后一级负担太小.⑷合理的配置是每隔2 – 4档设置一级过滤器, 按欧洲现行过滤器效率分级, 如末端使用H13高效过滤器, 前级可选用F5 – F8 – H10三通级保护, 末H13高效过滤器的使用寿命高达八年.⑸洁净室末端高效过滤器的使用寿命应为5 –15年, 影响使用寿命的最主要因素是预过滤器本身质量的优劣和配置是否合理.⑹洁净室末端高效过滤器前要有效率不低于F8的过滤器来保护.⑺在城市中央空调系统中, G3 – F6是常见的初级过滤器.⑻要点: 末级过滤器的性能要可靠.预过滤器的效率和配置要合理.初级过滤器的维护要方便.4.2 高效过滤器的选用⑴通常情况下, 同材质的过滤器, 效率高的阻力大, 价格也高.⑵高洁净度要求的洁净室可以选用效率较高的HEPA或ULPA过滤器,低洁净度要求的洁净室可以选用效率较低的HEPA过滤器.⑶高发尘量下过滤器效率的变化, 对洁净室洁净度的影响不大, 因此洁净度要求不高的洁净室不宜选用较高效率的高效过滤器.⑷低发尘量下, 较高效率的高效过滤器在低风速时对洁净度有明显的好处. 因此, 对要求高洁净度的洁净室在选用较高效率过滤器的同时, 要降低其迎面风速.4.3 风速对过滤器的影响⑴在绝大多数情况下, 风速越低, 过滤器的使用效果越好.⑵对于高效过滤器, 风速减少一半, 粉尘的透过率会降低一个数量级(效率数值增加一个9), 风速增加一倍, 透过率会增加一个数量级(效率数值降低一个9).⑶对于高效过滤器, 气流穿过滤材的速度一般在0.01- 0.04m/s, 在这个范围内过滤器的阻力和过滤风量呈正比关系. 如果一台额定风量为1000m3/h 的过滤器, 其初阻力为250Pa, 但在使用中其实际风量祗有500m3/h时, 它的初阻力可降为125Pa.⑷一般通风用过滤器, 气流穿过滤材的速度在0.13- 1.0m/s范围内, 阻力与风量不再是线性关系, 而是一条上扬的弧线, 当风量增加30%,阻力可能为增加50%.⑸过滤器阻力是一个非常重要的参数, 不要忘掉向过滤器供应商索要风量- 阻力曲线.4.4 选用过滤面积大的过滤器⑴此地讲的过滤面积是过滤器过滤材料的面积, 一只过滤器的过滤面积经常是过滤器迎风面积的数倍、数十倍,甚至上百倍.⑵过滤面积大, 穿过滤材的气流速度就低减, 过滤器的阻力就小,同时能容纳的粉尘就多. 因此, 增加过滤面积是延长过滤器使用寿命最有效的手段.⑶经验表明, 对于同种结构、同样滤材的过滤器, 当终阻力确定时,过滤面积增加50%时,过滤器的使用寿命会增加70 – 80%,当过滤面积增加一倍时,过滤器的使用寿命是原来的三倍。