当前位置:文档之家› 2020年上海市交大附中高考数学考前试卷(附解析)

2020年上海市交大附中高考数学考前试卷(附解析)

2020年上海市交大附中高考数学考前试卷一、选择题(本大题共4小题,共12.0分) 1. “x ∈[−π2,π2]是“sin(arcsin)=x ”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要2. 已知F 为抛物线y 2=2px(p >0)的焦点,A(x 1,y 1)、B(x 2,y 2)是抛物线上的不同两点,则下列条件中与“A 、F 、B 三点共线”等价的是( )A. x 1x 2=p 24 B. y 1y 2=−p 2C. 1|FA|+1|FB|=2pD. x 1x 2+y 1y 2=−3p 243. 已知曲线Γ的参数方程为{x =t 3−tcosty =ln(t +√t 2+1),其中参数t ∈R ,则曲线Γ( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点对称D. 没有对称性4. 已知数列{a n }与{b n }前n 项和分别为S n ,T n ,且a n >0,2S n =a n 2+a n ,n ∈N ∗,b n =2n +1(2n +a n )(2n+1+a n+1),对任意的n ∈N ∗,k >T n 恒成立,则k 的最小值是( )A. 1B. 12C. 13D. 16二、填空题(本大题共12小题,共36.0分)5. 已知集合A ={x||x|≤2,x ∈R},B ={x|√x ≤4,x ∈Z},则A ∩B = ______ .6. 函数y =√3sin2x +cos2x 的最小正周期是______.7. 抛物线y =x 2的准线方程是______.8. 已知方程∣∣∣x−1bx −2∣∣∣=0的一个根是a +2i(其中a ∈R ,i 是虚数单位),则实数b =______.9. 设x ,y 满足约束条件{2x +3y −3≤02x −3y +3≥0y +3≥0,则z =2x +y 的最小值是____________10. 若a n 是(2+x)n (n ∈N ∗,n ≥2,x ∈R)展开式中x 2项的系数,则n →∞lim(22a 2+23a 3+⋯+2na n)=______.11. 在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,其三视图是三个全等的等腰直角三角形,则异面直线AC与BD所成的角的余弦值为______.12.为抗击此次疫情,我市某医院从3名呼吸内科医生、4名急诊重症科医生和5名护士中选派5人组成一个抗击疫情医疗小组,则呼吸内科与急诊重症科医生都至少有一人的选派方法种数是______.13.若关于x的方程1|x−1|+|2x+2|−4=a的解集为空集,求实数a的取值范围______.14.已知函数y=f(x)为定义域R上的奇函数,且在R上是单调递增函数,函数g(x)=f(x−3)+x,数列{a n}为等差数列,且公差不为0,若g(a1)+g(a2)+⋯+g(a9)= 27,则a1+a2+⋯+a9=______.15.已知整数数列{a n}共5项,其中a1=1,a5=4,且对任意1≤i≤4,都有|a i+1−a i|≤2,则符合条件的数列个数为______.16.已知点P(0,2),椭圆x216+y28=1上两点A(x1,y1),B(x2,y2)满足AP⃗⃗⃗⃗⃗ =λPB⃗⃗⃗⃗⃗ (λ∈R),则|2x1+3y1−12|+|2x2+3y2−12|的最大值为______.三、解答题(本大题共5小题,共60.0分)17.如图,四棱锥O−ABCD的底面是边长为1的菱形,OA=2,∠ABC=60°,OA⊥平面ABCD,M、N分别是OA、BC的中点.(1)求证:直线MN//平面OCD;(2)求点M到平面OCD的距离.18.某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地AOB进行改建.如图所示,平行四边形OMPN区域为停车场,其余部分建成绿地,点P在围墙AB弧上,点M和点N分别在道路OA和道路OB上,且OA=60米,∠AOB=60°,设∠POB=θ.(1)求停车场面积S关于θ的函数关系式,并指出θ的取值范围;(2)当θ为何值时,停车场面积S最大,并求出最大值(精确到0.1平方米).19.对于函数f(x),若在定义域内存在实数x0,满足f(−x0)=−f(x0),则称f(x)为“M类函数”.(1)已知函数f(x)=2cos(x−π3),试判断f(x)是否为“M类函数”?并说明理由;(2)若f(x)={log2(x2−2mx)−2,x≥3,x<3为其定义域上的“M类函数”,求实数m取值范围.20.已知椭圆M:x2a2+y2b2=1(a>b>0)的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点N(√2,√22).(1)求椭圆M的方程;(2)若斜率为−12的直线l1与椭圆M交于P,Q两点(点P,Q不在坐标轴上);证明:直线OP,PQ,OQ的斜率依次成等比数列.(3)设直线l2与椭圆M交于A,B两点,且以线段AB为直径的圆过椭圆的右顶点C,求ABC面积的最大值.21.已知f(x)是定义在[0,+∞)上的函数,满足:①对任意x∈[0,+∞),均有f(x)>0;②对任意0≤x1<x2,均有f(x1)≠f(x2).数列{a n}满足:a1=0,a n+1=a n+1f(a n),n∈N∗.(1)若函数f(x)=a⋅2x−1(x≥0),求实数a的取值范围;(2)若函数f(x)在[0,+∞)上单调递减,求证:对任意正实数M,均存在n0∈N∗,使得n>n0时,均有a n>M;(3)求证:“函数f(x)在[0,+∞)上单调递增”是“存在n∈N∗,使得f(a n+1)<2f(a n)”的充分非必要条件.答案和解析1.【答案】B【解析】解:∵y=arcsinx的定义域为[−1,1],∴sin(arcsinx)=x⇔x∈[−1,1],∵x∈[−π2,π2]推不出x∈[−1,1],x∈[−1,1]⇒x∈[−π2,π2 ],∴“x∈[−π2,π2]是“sin(arcsin)=x”的必要非充分条件.故选:B.根据充分条件和必要条件的定义分别进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.2.【答案】B【解析】解:P(p2,0),若A,B,F三点共线,设直线AB的方程为:x=my+p2,代入y2=2px可得:y2−2pmy−p2=0,∴y1y2=−p2,∴x1x2=y12y224p =p24.∴x1x2+y1y2=p24−p2=−3p24,又|FA|=x1+p2,|FB|=x2+p2,∴1|FA|+1|FB|=1x1+p2+1x2+p2=x1+x2+px1x2+p2(x1+x2)+p24=x1+x2+pp22+p2(x1+x2)=x1+x2+pp2(x1+x2+p)=2p,设B关于x轴的对称点为B′(x2,−y2),显然A,F,B′满足条件x1x2=p24,且|FB|=|FB′|,但此时A,F,B′三点不共线,故A,C错误;若x1x2+y⋅y2=−3p24,则y12y224p2+y1y2+3p24=0,解得y1y2=−p2或y1y2=−3p2,故D错误,故选:B.当A,B,F共线时计算各结论,再根据对称点的坐标关系判断是否等价.本题考查了直线与抛物线的位置关系,属于中档题.3.【答案】C【解析】 【分析】本题考查曲线的参数方程,属于基础题型.设出当t =t 0时,对应点的坐标为(x 0,y 0),判断出(−x 0,−y 0)也在曲线上,进而求出结果. 【解答】解:设当t =t 0时,对应点的坐标为(x 0,y 0), 此时有{x 0=t 03−t 0cost 0y 0=ln(t 0+√t 02+1), 设x =f(t)=t 3−tcost ,y =g(t)=ln(t +√t 2+1), 对于每一个参数t ,都有唯一对应的x 和y , 则当t =−t 0时,有{(−t 0)3−(−t 0)cos (−t 0)=−(t 03−t 0cost 0)=−x 0ln[(−t 0)+√(−t 0)2+1]=−ln(t 0+√t 02+1)=−y 0, 即点(−x 0,−y 0)也在曲线Γ上,而点(x 0,y 0)和点(−x 0,−y 0)关于原点对称, 故曲线Γ关于原点对称. 故选:C .4.【答案】C【解析】解:数列{a n }的前n 项和分别为S n ,且a n >0,2S n =a n 2+a n ,n ∈N ∗, 当n ≥2时,2S n−1=a n−12+a n−1,两式相减得2a n =a n 2−a n−12+a n −a n−1,所以(a n +a n+1)(a n −a n−1−1)=0,整理得a n −a n−1=1(常数).当n =1时,2a 1=a 12+a 1,解得a 1=1(a 1=0舍去),故数列{a n }是以1为首项,1为公差的等差数列.所以a n =n(首项符合通项). 所以b n =2n +1(2n +an )(2n+1+an+1)=12n +n −12n+1+n+1,所以T n =(13−16)+(16−111)+⋯+12n +n −12n+1+n+1=13−12n+1+n+1<13, 所以对任意的n ∈N ∗,k >T n 恒成立,只需k ≥13即可. 即k 的最小值为13.故选C.首先利用已知条件利用递推关系式求出数列的通项公式,进一步利用裂项相消法、放缩法和恒成立问题的应用求出结果.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,放缩法和恒成立问题的应用,主要考查学生的运算能力和转换能力,属于中档题.5.【答案】{0,1,2}.【解析】解:∵集合A={x||x|≤2,x∈R}={x|−2≤x≤2},B={x|√x≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},∴A∩B={0,1,2}.故答案为:{0,1,2}.先分别求出集合A和B,由此能求出A∩B.本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.6.【答案】π【解析】解:y=√3sin2x+cos2x=2(√32sin2x+12cos2x)=2sin(2x+π6),∵ω=2,∴T=2π2=π.故答案为:π函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出最小正周期.此题考查了两角和与差的正弦函数公式,以及周期公式,将函数解析式化为一个角的正弦函数是解本题的关键.7.【答案】4y+1=0【解析】解:因为抛物线的标准方程为:x2=y,焦点在y轴上;所以:2p=1,即p=12,所以:p2=14,∴准线方程y=−p2=−14,即4y+1=0.故答案为:4y+1=0.先根据抛物线的标准方程得到焦点在y轴上以及2p=1,再直接代入即可求出其准线方程.本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.8.【答案】5【解析】解:方程∣∣∣x −1b x −2∣∣∣=0可化为 x(x −2)+b =0,把x =a +2i 代入方程,得(a +2i)(a −2+2i)+b =0, 即(a 2−2a −4+b)+(4a −4)i =0,所以{a 2−2a −4+b =04a −4=0, 解得a =1,b =5; 所以实数b =5. 故答案为:5.根据行列式列出方程,把根代入方程,利用复数的运算性质列出方程组求出a 、b 的值. 本题考查了行列式与复数的计算问题,也考查了运算求解能力,是基础题.9.【答案】−15【解析】解:x ,y 满足约束条件{2x +3y −3≤02x −3y +3≥0y +3≥0的可行域如图:z =2x +y 经过可行域的A 时,目标函数取得最小值, 由{y =−32x −3y +3=0,解得A(−6,−3), 则z =2x +y 的最小值是:−15. 故答案为:−15.画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可. 本题考查线性规划的简单应用,考查数形结合以及计算能力.10.【答案】8【解析】解:∵a n 是(2+x)n (n ∈N ∗,n ≥2,x ∈R)展开式中x 2项的系数,又(2+x)n 的展开式的通项公式为T r+1=C n r ⋅2n−r ⋅x r ,令r =2,可得x 2项的系数为C n 2⋅2n−2.∴a n =C n 2⋅2n−2.∴n →∞lim(22a 2+23a 3+⋯+2n a n )=n →∞lim(221+23C n 2⋅2+⋯+2n C n 2⋅2n−2)=n →∞lim(221+22C 32+⋯+22C n 2)=n →∞lim4⋅(11+1C 32+⋯+1C n2)=n →∞lim4⋅(11+22×3+23×4…+2n(n−1))=n →∞lim8⋅(1−12+12−13+13−14+⋯+1n−1−1n)=n →∞lim8⋅(1−1n)=8,故答案为:8.由题意可得x 2项的系数为C n 2⋅2n−2,即a n =C n 2⋅2n−2.再把要求的式子 n →∞lim(22a 2+23a 3+⋯+2n a n) 化为n →∞lim4⋅(11+1C 32+⋯+1Cn2),即n →∞lim8⋅(1−1n),从而得到结果.本题主要考查二项式定理的应用,求展开式中某项的系数,极限及其运算,属于中档题.11.【答案】√33【解析】解:由三视图可知AB ⊥平面BCD ,BD ⊥CD ,且AB =BD =CD ,以D 为原点建立空间坐标系如图所示:设AB =1,则A(1,0,1),B(1,0,0),C(0,1,0),D(0,0,0),∴AC ⃗⃗⃗⃗⃗ =(−1,1,−1),DB ⃗⃗⃗⃗⃗⃗ =(1,0,0), ∴cos <AC ⃗⃗⃗⃗⃗ ,DB ⃗⃗⃗⃗⃗⃗ >=AC ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗ ||DB ⃗⃗⃗⃗⃗⃗ |=−1√3×1=−√33. 设AC 与BD 所成的角为α,则cosα=|cos <AC ⃗⃗⃗⃗⃗ ,DB⃗⃗⃗⃗⃗⃗ >|=√33. 故答案为:√33.根据三视图得出三棱锥的结构特征,建立空间坐标系,利用平面向量计算异面直线所成角.本题考查了异面直线所成角的计算,属于基础题.12.【答案】611【解析】解:根据题意,有3名呼吸内科医生、4名急诊重症科医生和5名护士共12人,从中选出5人,有C 125=792种选法,其中没有内科医生的选法有C 95=126种,没有重症科医生的选法有C 85=56种, 内科医生和重症科医生都没有,即只有护士的选法有1种, 则有792−126−56+1=611种选派方法;故答案为:611根据题意,首先计算从12人中选出5人的选法,进而计算其中“没有内科医生”、“没有重症科医生”和“内科医生和重症科医生都没有”的选法,分析可得答案.本题考查排列组合的应用,注意用间接法分析,避免分类讨论,属于基础题.13.【答案】(−12,0]【解析】解:由已知设y=1|x−1|+|2x+2|−4={13x−3,x≥11 x−1,−1<x<11−3x−5,x≤−1,所以函数的值域为{y|y>0,或y≤−12},要使1|x−1|+|2x+2|−4=a的解集为空集,只要函数y=1|x−1|+|2x+2|−4与y=a没有交点,所以满足条件的a的取值范围为−12<a≤0.故答案为:(−12,0].设y=1|x−1|+|2x+2|−4,得到函数的值域,利用y=a在函数值域的补集中即可.本题考查了方程解的个数问题;关键是正确求出函数的值域.14.【答案】27【解析】解:因为函数f(x)为定义域上的奇函数,则f(x)关于(0,0)对称.设ℎ(x)=f(x−3)+x−3,所以ℎ(x)关于(3,0)对称,则ℎ(x)+ℎ(6−x)=0.由g(a1)+g(a2)+⋯…+g(a9)=27可得:f(a1−3)+a1+f(a2−3)+a2+⋯…+f(a9−3)+a9=27,所以f(a1−3)+a1−3+f(a2−3)+a2−3+⋯…+f(a9−3)+a9−3=0即ℎ(a1)+ℎ(a2)+⋯…+ℎ(a9)=0又数列{a n}为等差数列,且ℎ(x)在R上是单调递增函数,所以必有ℎ(a1)+ℎ(a9)=0,则有a1−3+a9−3=0,所以2a5=a1+a9=6,即a5=3所以a1+a2+⋯…+a9=9a5=27故答案为:27.设ℎ(x)=f(x−3)+x−3,则可得ℎ(a1)+ℎ(a2)+⋯…+ℎ(a9)=0,综合等差数列的性质可得;a1+a9=a2+a8=⋯…=a5+a5,再利用函数ℎ(x)的单调性和对称性,即可计算得出.本题主要考查函数综合,函数概念与性质以及等差数列,属于中档题.15.【答案】52【解析】解:根据题意,设x 1=a 2−a 1,x 2=a 3−a 2,x 3=a 4−a 3,x 4=a 5−a 4,x 5=a 5−a 4,∴x 1+x 2+x 3+x 4=3且x 1、x 2、x 3、x 4∈{−2,−1,0,1,2}, 不妨设x 1≤x 2≤x 3≤x 4,则(x 1,x 2,x 3,x 4)=(−2,1,2,2),(−1,1,1,2),(−1,0,2,2),(0,0,1,2),(0,1,1,1)共五类,则符合条件的数列个数为4C 42C 21+4=52,故答案为:52.根据题意,设x 1=a 2−a 1,x 2=a 3−a 2,x 3=a 4−a 3,x 4=a 5−a 4,x 5=a 5−a 4,可得x 1+x 2+x 3+x 4=3且x 1、x 2、x 3、x 4∈{−2,−1,0,1,2},再利用组合知识进行求解.本题考查排列组合的应用,涉及数列的表示方法,属于基础题.16.【答案】24【解析】解:如图所示,满足AP⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ (λ∈R),可得:λ∈[3−2√2,1]. 直线l 的方程为:2x +3y −12=0. 点A ,P ,B 到直线l 的距离分别为:d 1=|2x 1+3y 1−12|√13,d 0=√13=√13,d 2=22√13.∴|2x 1+3y 1−12|+|2x 2+3y 2−12|=√13(d 1+d 2).λ=1时,d 1+d 2=2d 0=√13,可得√13(d 1+d 2)=12. λ=3−2√2时,d 1+d 2=√2√13+√3√13=√13.可得√13(d 1+d 2)=24.λ∈[3−2√2,1].可得:d 1+d 2∈[12,24].则|2x 1+3y 1−12|+|2x 2+3y 2−12|的最大值为24. 故答案为:24.如图所示,满足AP ⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ (λ∈R),可得:λ∈[3−2√2,1].直线l 的方程为:2x +3y −12=0.点A ,P ,B 到直线l 的距离分别为:d 1=11√13,d 0=√13=√13,d 2=22√13.|2x 1+3y 1−12|+|2x 2+3y 2−12|=√13(d 1+d 2).λ=1时,d 1+d 2=2d 0.λ=3−2√2时,可得√13(d 1+d 2)=24.进而得出结论.本题考查了椭圆的标准方程及其性质、点到直线的距离公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.17.【答案】(1)证明:取OD 的中点P ,连接PC 、PM ,∵M 、N 分别是OA 、BC 的中点,∴PM//AD ,且PM =12AD ,NC//AD ,且NC =12AD ,∴PM//NC ,且PM =NC ,则PMNC 是平行四边形,得MN//PC ,∵PC ⊂平面OCD ,MN ⊄平面OCD , ∴直线MN//平面OCD ;(2)解:连接ON 、ND ,设点M 到平面OCD 的距离为d , 由(1)得,点N 到平面OCD 的距离为d ,设三棱锥O −CDN 的体积为V ,则V =13×S △CDN ×OA =13×S △OCD ×d , 依题意,S △CDN =12×CD ×CN ×sin∠BCD =√38, ∵AC =AD =CD =1,∴OC =OD =√5,则S △OCD =12×CD ×√5−14=√194.由13×√38×2=13×√194×d ,得点M 到平面OCD 的距离d =√5719.【解析】(1)取OD 的中点P ,连接PC 、PM ,由三角形的中位线定理可得PMNC 是平行四边形,得MN//PC ,再由直线与平面平行的判定可得直线MN//平面OCD ; (2)连接ON 、ND ,设点M 到平面OCD 的距离为d ,可得点N 到平面OCD 的距离为d ,然后利用等体积法求点M 到平面OCD 的距离.本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,是中档题.18.【答案】解:(1)△OPN 中,由正弦定理得,OPsin2π3=ONsin(π3−θ),即√32=ONsin(π3−θ),解得ON =40√3sin(π3−θ);所以停车场面积S 关于θ的函数关系式为S =40√3sin(π3−θ)⋅60sinθ=2400√3sin(π3−θ)sinθ,其中θ∈(0,π3);(2)由S =2400√3sin(π3−θ)sinθ=2400√3(√32cosθ−12sinθ)⋅sinθ =1200√3(√3sinθcosθ−sin 2θ) =1200√3(√32sin2θ+12cos2θ−12) =1200√3[sin(2θ+π6)−12];当2θ+π6=π2,即θ=π6时,停车场面积S 最大,最大值为: 1200√3×(1−12)=600√3=600×1.732=1039.2(平方米).【解析】(1)由正弦定理求得ON ,再计算停车场面积S 关于θ的函数关系式; (2)化简函数解析式S ,求出S 的最大值以及取最大值时对应θ的值. 本题考查了三角函数模型的应用问题,也考查了运算求解能力,是中档题.19.【答案】解:(1)由题意,函数f(x)在定义域内存在实数x 0,满足f(−x 0)=−f(x 0),可得2cos(−x 0−π3)=−2cos(x 0−π3),即cos(−x 0−π3)=−cos(x 0−π3),整理得√3cosx 0=0,所以存在x 0=π2满足f(−x 0)=−f(x 0)所以函数f(x)=2cos(x −π3)是“M 类函数”.(2)由x 2−2mx >0在x ≥3上恒成立,可得m <32,因为f(x)={log 2(x 2−2mx)−2x ≥3x <3为其定义域上的“M 类函数”,所以存在实数x 0使得f(−x 0)=−f(x 0),①当x 0≥3时,则−x 0≤−3,所以−2=−log 2(x 02−2mx 0),所以x 02−2mx 0=4,即m =12x 0−2x 0,因为函数y =12x −4x ,x ≥3为单调增函数,所以m ≥56; ②当−3<x 0<3时,−3<−x 0<3,此时−2=2,不成立;③当x 0≤−3,则−x 0≥3,所以log 2(x 02+2mx 0)=2,所以m =−12x 0+2x 0因为函数y =−12x +4x (x ≤−3)为单调减函数,所以m ≥56; 综上所述,求实数m 取值范围[56,32).【解析】(1)根据题意只需2cos(−x 0−π3)=−2cos(x 0−π3)有解,即可判断f(x)是否为“M 类函数”.(2)由对数函数的性质可得由x 2−2mx >0在x ≥3上恒成立,即m <32;若是“M 类函数”,则存在实数x 0使得f(−x 0)=−f(x 0),分①当x 0≥3时,②当−3<x 0<3时,③当x 0≤−3,三种情况分析方程f(−x 0)=−f(x 0),能否有解,即可得m 的取值范围. 本题考查函数的新定义,“M 类函数”,解题中注意三角形数性质的应用,属于中档题. 20.【答案】解:(1)根据题意,设椭圆的上下顶点为B 1(0,b),B 2(0,−b),左焦点为F 1(−c,0), 则△B 1B 2F 1是正三角形,所以2b =√c 2+b 2=a ,则椭圆方程为x 24b 2+y 2b 2=1.将(√2,√22)代入椭圆方程,可得24b 2+12b 2=1,解得a =2,b =1.故椭圆的方程为x 24+y 2=1.(2)证明:设直线u 的方程为y =−12x +m ,P(x 1,y 1),Q(x 2,y 2), 由{y =−12x +mx 24+y 2=1,消去y ,得x 2−2mx +2(m 2−1)=0则△=4m 2−8(m 2−1)=4(2−m 2)>0,且x 1+x 2=2m >0,x 1x 2=2(m 2−1)>0; 故y 1y 2=(−12x 1+m)(−12x 2+m) =14x 1x 2−12m(x 1+x 2)+m 2=m 2−12,k OP k OQ =y 1y 2x 1x 2=14x 1x 2−12m(x 1+x 2)+m 2x 1x 2=14=k PQ2. 即直线OP 、PQ 、OQ 的斜率依次成等比数列.(3)由题意,设直线v 的方程为x =ky +n ,联立{x 24+y 2=1x =ky +n ,消去x 得(k 2+4)y 2+2kny +n 2−4=0. 设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2knk 2+4,y 1y 2=n 2−4k 2+4, 因为以线段AB 为直径的圆过椭圆的右顶点C(2,0),所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0, 由CA ⃗⃗⃗⃗⃗ =(x 1−2,y 1),CB⃗⃗⃗⃗⃗ =(x 2−2,y 2),则(x 1−2)(x 2−2)+y 1y 2=0, 将x 1=ky 1+n ,x 2=ky 2+n 代入上式并整理得(k 2+1)y 1y 2+k(n −2)(y 1+y 2)+(n −2)2=0, 则(k 2+1)(n 2−4)k +4+−2k 2n(n−2)k +4+(n −2)2=0,化简得(5n −6)(n −2)=0,解得n =65或n =2, 因为直线x =ky +n 不过点C(2,0),所以n ≠2,故n =65.所以直线l 恒过点D(65,0). 故S ABC =12|DC||y 1−y 2|=12×(2−65)√(y 1+y 2)2−4y 1y 2 =25√(−125k k 2+4)2−4(3625−4)k 2+4=825√25(k 2+4)−36(k 2+4)2,设t =1k 2+4(0<t ≤14),则S ABC =825√−36t 2+25t 在t ∈(0,14]上单调递增, 当t =14时,S ABC =825√−36×116+25×14=1625,所以ABC 面积的最大值为1625.【解析】(1)设椭圆的上下顶点为B 1(0,b),B 2(0,−b),左焦点为F 1(−c,0),椭圆方程为x 24b 2+y 2b 2=1.将(√2,√22)代入椭圆方程,解得a ,b ,即可得到椭圆方程.(2)设直线u 的方程为y =−12x +m ,P(x 1,y 1),Q(x 2,y 2),由{y =−12x +m x 24+y 2=1,消去y ,得x 2−2mx +2(m 2−1)=0利用韦达定理,转化求解直线的斜率乘积,然后说明直线OP 、PQ 、OQ 的斜率依次成等比数列.(3)设直线v 的方程为x =ky +n ,联立{x 24+y 2=1x =ky +n,消去x 得(k 2+4)y 2+2kny +n 2−4=0.设A(x 1,y 1),B(x 2,y 2),利用韦达定理,结合斜率的数量积为0,转化求解n ,得到直线恒过的定点,推出三角形的面积,然后求解最大值.本题考查椭圆方程的求法直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题.21.【答案】解:(1)由f(x)=a ⋅2x −1>0,即a >(12)x 对一切x ∈[0,+∞)恒成立,所以a >1,当a >1时,f(x)在x ∈[0,+∞)上单调递增,所以对任意0≤x 1<x 2,均有f(x 1)≠f(x 2), 综上,实数a 的取值范围为:a >1;证明(2):由函数f(x)在[0,+∞)上单调递减,即对一切x ∈[0,+∞),均有f(x)≤f(0), 所以对一切n ∈N ∗,均有f(a n )≤f(0),可得:a n+1=a n +1f(a n)≥a n +1f(0),所以:a n =a n −a n−1++a 2−a 1+a 1≥n−1f(0),对一切n ≥2, 对任意正实数M ,取n 0=[Mf(0)]+2∈N ∗, 当n >n 0时,a n ≥n−1f(0)>n 0−1f(0)>Mf(0)+1−1f(0)=M ;证明:(3)非必要性:取f(x)={x +13−x ,x ∈[0,1]∪[2,+∞)x ∈(1,2),在[0,+∞)不为增函数,但a 1=0,a 2=a 1+1f(a 1)=1,a 3=a 2+1f(a 2)=32,f(a 2)=2,f(a 3)=32<2f(a 2),充分性:假设对一切n ∈N ∗,均有f(a n+1)≥2f(a n )>0, 所以:f(a n )≥2n−1f(a 1)=2n−1f(0),①由递推式a n+1=a n +1f(a n)≤a n +12n−1f(0)≤≤a 1+1f(0)(12n−1++12+1)<2f(0),因为f 为增函数,所以f(a n+1)≤f(2f(0)),②由①②可知:2n f(0)≤f(2f(0))对一切n ∈N ∗,n ≥2均成立,又A =f(0)>0,B =f(2f(0))>0可知,当n >log 2(AB )时,上述不等式不成立, 所以假设错误,即存在n ∈N ∗,使得f(a n+1)<2f(a n ).【解析】(1)根据定义可得a >(12)x 对一切x ∈[0,+∞)恒成立,即可求出a 的范围; (2)根据函数的单调性可得对一切n ∈N ∗,均有f(a n )≤f(0),即可证明; (3)分别从必要性和充分性两个方面证明即可.本题考查了数列的函数特征,不等式的证明,充分性和必要性,考查了转化与化归能力,逻辑推理能力,属于难题.。

相关主题