三、径向分布函数法中心分子第一层:第一配位圈 第二层:第二配位圈 . . .短程有序,远程无序1、 基本概念,基本定义首先定义一个新的函数---n 重相关函数 为当系统的位能E N = 0 ,则系统内分子是独立的,由分布函数公式可得到:g(r)r因此对于分子相互独立的系统,,对于分子间有相互作用的系统,相当于对分子独立性的校正,亦即表示了分子的相关性,因而称之为相关函数。
相关函数中,最重要的是二重相关函数g(2),它可由X射线衍射实验和计算机分子模拟的机器实验结果获得,由式子可知表示如下上式即二重相关函数与位形积分的关系。
对于由球星对称分子构成的液体,仅取决于分子1和2的距离,即可写成g(r),所以就有故上式中的分子相对函数g(r)就是分子的径向分布函数。
因,即第一个分子是任意分布的。
由于液体分子间存在相互作用,第二个分子不可能任意分布,而构成相对于中心分子的局部密度,相应的二重分布函数为将上式代入到中得到所以径向分布函数g(r)的物理意义可解释为:在一个中心分子周围距离为r处,分子的局部密度相对于本体密度的比值。
从径向分布函数g(r)可以计算液体的配位数:实际上N为中心分子周围分子的总数,而为距中心分子r处在r + dr壳层内的分子数目。
若将上式积分到第一配位圈的距离L处,即可得到配位数N(L)为N(L)实际上也是围绕中心分子,半径为r=L的球体内的分子数。
如图已知:r1,r2…rN 代表坐标系原点,指向分子1,2,… N 的向量,体系分子1,分子2分别出现在r1处的体系元 的几率为:称双重标明分布函数;:泛指(任意分子分布在r1, r2处的概率):双重分布函数()()()NkT r r u N kT q u K KNTr id d de d d d e Q N N ττττττϕϕϕ............121/...21/1⎰⎰⎰⎰=-*===2τd ()()()KN kT r r r u d d d d e d d r r P N ϕττττττ213/,...,21212]......[,21⎰⎰-=()()()KN kTr r u d d e r r P N ϕττ⎰⎰-=......,3/...2121()()21212,ττd d r r P()()212,r r ρ()()()()()()()2122212212,,1,r r PNr r P N N r r ≈-=ρxy所以: (几率归一化性质)N 重分布函数:(n 重标明分布函数)(n 重分布函数)数密度径向分布函数定义由式子得到,与一指定分子相距r 处,分子局部密度与平均数密度之比;的定义:()()()()()221212212121,1,NN N d d r r d d r r P V≈-==⎰⎰⎰⎰ττρττ()()()KN n r r r u N n d d e r r r P N ϕττ⎰⎰+-=.........,1,...,2121()()()()()()n n n n r r P n N N M r r ,...1...1,...11+--=ρ()()V r P 111=()()11111==⎰⎰V d d r P ττ()()V Nr n =1ρzr 1xr 2d τ1 d τ2yr 12 ()()ρρr r g =()()()()()()()1221212..,21r g P P r r r r =ρ()12r g ()()()()r g V N r g V N V N r (2)12122⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=ρ所以:最简单的: 2、热力学的计算(用径向分布函数计算)由正则系统配分函数为 从而得到系统的能量为E式中第一项为体系的平均动能,第二项为体系的平均位能。
位能 由证明:()()()r g V N r .22⎪⎭⎫⎝⎛=ρ()kTu e r g /-=K NTN Q kT kT F rϕϕ.!ln ln *⎪⎪⎭⎫ ⎝⎛-=-=P K VK N V E E T kT NkT T kT E +=⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛∂∂=ϕϕln 23ln 2.2SdT PdV dT T F dV V F dF NV N T --=⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=,,ϕϕln ln ,kT T T kT E TS E F NV -=⎪⎭⎫⎝⎛∂∂+=-=NV T F S ,⎪⎭⎫ ⎝⎛∂∂-=NT V F P ,⎪⎭⎫ ⎝⎛∂∂-=-U-U所以: 所以:(体系的位能函数)任一项的正则系统平均为:1:NV T kT E ,2ln ⎪⎭⎫⎝⎛∂∂=ϕ()[]()()N kT r r u N N kT r r u VK d d e r r r u kTd d e T T N N ττττϕ...,..., (1)......1/,...2121/,..11--⎰⎰⎰⎰=∂∂=⎪⎭⎫⎝⎛∂∂()()()N V T u d d e r r u V kT KNkTr r u NVK N ,,...,......ln 1/, (12)1--==⎪⎭⎫ ⎝⎛∂∂⎰⎰ϕττϕ()()∑=ji ij ru q u φ()()()()[]()()()()()()()()()dr r r g r u V dr r r g r u d V d d r g r u V d d r r P r u d d d d e r u d d e r u u KN kTu K NkTr r u N 2021221122122121221213/211/, (21)41411,,............1,21ππτττττϕττττϕττ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∝---======drr d r g V r r P 221)2(4)(1),(πτ==分子2在分子1周围运动2:所以,(粒子数密度 )所以:(液体能量公式)上式就是单原子分子流体的能量与径向分布函数的关系称之为能量方程。
已知正则系统中,体系压力可用下式表示式中,Q N 为位形积分,Q N = 。
又(压力公式)3、应用举例:()()()()drr r g r u r N r u N N U 202214221π⎰∞--≈-=()()⎪⎭⎫ ⎝⎛+=⎰∞0242123dr r r g r u V N kT N E πNT K N T V kT V F P ,,ln ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂-=ϕ()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎰∞034611dr r r g dr r du V N kT V NkT P πVN=ρ()NkT be V V T a P T =⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+βφ2()TeT αφ=Van der Waals 方程中,a ,b 常数与T ,无关, 而这里推导出的是:均与T 有关,显然比Van der Waals 方程更好。
范德华方程本身也并不是一个精确的状态方程,它的参数a 、b 并未能确切地反应分子间的相互作用。
或:Van der Waals 模型:令: 则:(第一项:斥力 第二项:引力)势能也可以表示为:()T a φT be β()()drr r g drr du VN V NkT P 302246π⎰∝-=()()dr r r gdrr du VN NkT PV 30246π⎰∝-=()()σσσ≥⎪⎭⎫⎝⎛-=∞=r r u r u r r u ,,,60π()()()()kTr u e r g r f drr du /,-==r()()()()()()dre rf r dr e r f r dr r rg drr du kT r u kTr u /3/3304-∞--∞⎰⎰⎰+=σσξσπ⎰⎰∞-+=σσξσdrr f dr r f r u )()()(引力部分:又,波尔兹曼积分:考虑到:所以,斥力部分为:引力部分:所以:简化,已知: (分子体积)所以:又:所以:⎰⎰∞∞-==σσ)()(u r u drr f kTdrr f TkTdr r f dr r f er f eer f r⎰=⎰⎰--∞--+--⎰⎰δξδσξσσσξσβσξσσ)(3)()(3)()(drr f udy )(=3σβT kTe -)()(30)(130T u dr e r f r r f kT φσσ≈⎰⎰∞-∞)(3232)(3230232303T u VNe KT V N NKT T e u kTe V N NKT PV T T φσπσπφσσπββ-+=⎥⎦⎤⎢⎣⎡+--=3061πσυ=)(4)4(0020T Vu V N e V NV NKT NKT PV T φβ-+=00204,4v u N a NV b ==NKT Vbe vV T a P T=++)1)()((2βφ或: 其中:----Reinganum 方程a, b ---范德华方程相比,均为温度的函数。
KNT be V VT a P T=-+))()((2βφT T beV vbe V ββ-≈--1)1(。