当前位置:文档之家› 扩频通信

扩频通信

目录一.扩频通信系统工作原理 (1)二.扩频通信的分类及优缺点 (3)1、直扩系统(DS) (3)2、跳频系统 (6)3、跳时系统 (9)三.扩频通信在移动通信中的应用 (10)四.扩频系统在其他领域中的应用 (11)五.参考文献 (13)一.扩频通信系统工作原理长期以来,人们总是想法使信号所占领谱尽量的窄,以充分利用十分宝贵的频谱资源。

为什么要用这样宽频带的信号来传送信息呢?简单的回答就是主要为了通信的安全可靠。

扩频通信的基本特点,是传输信号所占用的频带宽度(W)远大于原始信息本身实际所需的最小(有效)带宽(DF),其比值称为处理增益Gp:Gp = W/DF (1)众所周知,任何信息的有效传输都需要一定的频率宽度,如话音为1.7 --- 3.1kHz,电视图像则宽到数兆赫。

为了充分利用有限的频率资源,增加通路数目,人们广泛选择不同调制方式,采用宽频信道(同轴电缆、微波和光纤等),和压缩频带等措施,同时力求使传输的媒介中传输的信号占用尽量窄的带宽。

因现今使用的电话、广播系统中,无论是采用调幅、调频或脉冲编码调制制式,Gp值一般都在十多倍范围内,统称为“窄带通信”。

而扩频通信的Gp值,高达数百、上千,称为“宽带通信”。

扩频通信的可行性,是从信息论和抗干扰理论的基本公式中引伸而来的。

信息论中关于信息容量的仙农(Shannon)公式为:C =WLog2(1十P/N) (2)式中:C --- 信道容量(用传输速率度量)W --- 信号频带宽度P --- 信号功率N --- 白噪声功率式(2)说明,在给定的传输速率C不变的条件下,频带宽度W和信噪比P/N是可以互换的。

即可通过增加频带宽度的方法,在较低的信噪比P/N(S/N)情况下,传输信息。

扩展频谱换取信噪比要求的降低,正是扩频通信的重要特点,并由此为扩频通信的应用奠定了基础。

扩频通信可行性的另一理论基础,为柯捷尔尼可夫关于信息传输差错概率的公式:Powj = f(E/N。

) (3)式中:Powj --- 差错概率E --- 信号能量N。

--- 噪声功率谱密度因为,信号功率P=E/T (T为信息持续时间)噪声功率N=WN。

(W为信号频带宽度)信息带宽 D F=l/T则式(3)可化为:Powj ? f(TW.P/N)= f(P/N.W/D F ) (4)式(4)说明,对于一定带宽DF的信息而言,用Gp值较大的宽带信号来传输,可以提高通信抗干扰能力,保证强干扰条件下,通信的安全可靠。

亦即式(4)与式(2)一样,说明信噪比和带宽是可以互换的。

总之,我们用信息带宽的100倍,甚至1000倍以上的宽带信号来传输信息,就是为了提高通信的抗干扰能力,即在强干扰条件下保证可靠安全地通信。

这就是扩展频谱通信的基本思想和理论依据。

扩频通信,的基本特点是其传输信息所用信号的带宽远大于信息本身的带宽。

除此以外,扩频通信还具有如下特征:是一种数字传输方式;带宽的展宽是利用与被传信息无关的函数(扩频函数)对被传信息进行调制实现的;在接收端使用相同的扩频函数对扩频信号进行相关解调,还原出被传信息。

扩频通信就其调制方式而言,与传统的数据通信没有什么差别,也包括ASK、FSK、PSK以及最近得到迅速发展的QAM,不同之处是在调制之前增加了一个扩频处理环节,把待传送符号用特征码进行扩展,扩展后的符号称为码片;在接收端同样增加了一个解扩处理的环节,将N个码片恢复为一个符号二.扩频通信的分类及优缺点1、直扩系统(DS)直扩系统就是采用高码速率的直接序列(Direct Sequence)伪随机码在发端进行扩频,在收端采用相同的伪码(PN)进行相关解扩。

DSSS - 工作原理直接序列扩频(Direct Sequence Spread Spectrum,DSSS)技术是一种常用的扩频通信物理层技术。

通信时,发送端利用高速率的扩频序列与发送信号序列进行模2加后生成的复合序列去调制载波,从而扩展信号频谱。

接收端在收到发射信号后,首先进行同步,然后利用与发送端相同的扩频序列对信号进行解扩,从而恢复出数据。

图1是DSSS 通信系统的系统框图。

在发射机端,待传输的数据信号与伪随机码(扩频码)波形相乘(或与伪随机码序列模2加),形成的复合码对载波进行调制,然后由天线发射出去。

在收信机端,要产生一个和发信机中的伪随机码同步的本地参考伪随机码,对接收信号进行相关处理,这一相关处理过程通常称为解扩。

解扩后的信号送到解调器解调,恢复出传送的信息。

A.抗干扰能力强扩频解调器实际上是一个相关器,扩频信号通过相关器后能有效地恢复,干扰信号(包括瞄准性窄带干扰和宽带干扰)由于与本地PN码不想关而被相关器抑制掉。

表示扩频通信特性的一个重要参数是扩频增益G(Spreading Gain),其定义为扩频前的信号带宽B1与扩频后的信号带宽B2之比。

G=B2/B1扩频通信中,接收端对接收到的信号做扩频解调,只提取扩频编码相关处理后带宽为B1的信号成份,而排除了扩展到宽带B2中的干扰、噪声和其他用户通信的影响,相当于把接收信噪比提高了G倍。

考虑到输出端的信噪比和接收系统损耗,可以认为实际的扩频增益带来的信噪比的改善为:M=G-输出端信噪比——系统损耗公式中的M叫做抗干扰容限。

在第四章的系统仿真中,我们可以更直观的观察到系统的抗干扰性能。

B.具有强的抗多径干扰能力无线电波在传播的过程中,除了直接到达接收天线的直射信号外,还会有各种反射体(如大气对流层、建筑物、高山、树木、水面、地面)等引起的反射和折射信号被接收天线接收。

反射和折射信号的传播时间比直射信号长,它对直射信号产生的干扰称为多径干扰。

多径干扰会造成通信系统的严重衰落甚至无法工作。

由扩频序列的自相关函数的特性知道。

当两个接收信号序列相对时间超过码元宽度时,相关器输出只为码长的倒数,故被很大程度地抑制掉。

直序扩频技术还有一种更先进的接收技术,叫RAKE接收技术,它可以实现多径分集接收,即将各种路径来的信号,包括直接、折射、反射绕射信号解扩后在相位上根据峰值校齐并进行叠加,使信号强度更高,不仅避免了多径干扰还增强了接收信号强度。

但是RAKE接收技术的实现比较复杂且昂贵。

C.对其他电台干扰小,抗截获能力强理论分析表明,信号的检测概率与信号能量与噪声功率谱密度之比成正比,与信号的频带宽度成反比。

直扩信号正好具有这两方面的优势,它的功率谱密度很低,单位时间内的能量就很小,同时它的频带很宽。

因此,它具有很强的抗截获性。

简单的说:由于信息信号经过扩频调制后频谱被大大扩展,使信号的功率谱密度大大降低,接收端接收到的信号谱密度比接收机噪声低,即信号完全淹没在噪声中,这样对其他同频段电台的接收不会形成干扰,信号也就不容易被发现,进一步检测出信号就更难,所以有非常高的隐蔽性,非常适合保密通信,特别适合应用于军事领域的通信。

正因为有此特点,FCC规定使用扩频通信机不必申请专用频率。

D.可以同频工作由于采用相关解扩,所以只要每部通信的解扩码(PN)不同,几部通信机就可以使用同一载频而不会有互相干扰,只是多增加一点背景噪声而已。

E.便于实现多址通信由于不同的扩频码是正交或接近正交的,彼此相互影响很小,所以可以把不同的扩频码作为用户的地址码,则很容易实现码分多址(CDMA)通信。

移动通信系统采用CDMA方式,理论上可以使通信容量比目前的蜂窝式通信容量大。

直接序列扩频在实际应用中往往会遇到以下几个问题:A.频道数减少当采用跳频/扩频体制时,为获得足够大的处理增益,系统占用带宽太大,这就减少了可供跳频的信道数。

B.带宽增大系统带宽太大,进入接收机前端的干扰信号增多。

C.信息量增大要得到有效的抗多径和利用多径的能力,扩频码片必须足够窄,信息比特必须足够宽,而后者又限制了信息传输速率的提高。

为了解决系统占用频带过宽、外部干扰增多和传输速率受限的矛盾,当前各国大多采用多进制扩频技术,相对有效的解决这些问题。

2、跳频系统调频系统(FH)就是采用跳频(Frequency Hopping)方式进行扩频,形象地说是采用特定的伪码控制的多频率移频键控。

FHSS跳频技术,英文全称“Frequency-Hopping Spread Spectrum”,缩写为FHSS,是无线通讯最常用的扩频方式之一。

跳频技术是通过收发双方设备无线传输信号的载波频率按照预定算法或者规律进行离散变化的通信方式,也就是说,无线通信中使用的载波频率受伪随机变化码的控制而随机跳变。

从通信技术的实现方式来说,“跳频技术”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。

从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。

其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。

与定频通信相比,跳频通信比较隐蔽也难以被截获。

只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。

同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。

由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。

因为这些优点,跳频技术被广泛适用于对通讯安全或者通讯干扰具有较高要求的无线领域,低端的应用产品包括无声电话、蓝牙设备、数字宝护神、婴儿监视器、无线摄像枪、移动电话等,中高端应用产品例如手军用电台、卫星电话等FHSS在同步、且同时的情况下,接受两端以特定型式的窄频载波来传送讯号,对于一个非特定的接受器,FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。

FHSS所展开的讯号可依特别设计来规避噪声或One-to-Many的非重复的频道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率的最大时间间隔(Dwell Time)为400ms。

跳频扩频就是用扩频的码序列去进行移频键控(FSK)调制,使载波的频率不断地跳变。

跳频系统的跳变频率有多个,多达几十各甚至上千个。

传送的信息与这些扩频码的组合进行选择控制,在传送中不断跳变。

在接收端,由于有与发送端完全相同的本地发生器发生完全相同的扩频码进行解扩,然后通过解调才能正确地恢复原有的信息。

所谓跳频,比较确切的意思是:用一定码序列进行选择的多频率频移键控。

也就是说,用扩频码序列去进行频移键控调制,使载波频率不断地跳变,所以称为跳频。

简单的频移键控如2FSK,只有两个频率,分别代表传号和空号。

而跳频系统则有几个、几十个、甚至上千个频率、由所传信息与扩频码的组合去进行选择控制,不断跳变。

相关主题