当前位置:文档之家› 分离过程热力学

分离过程热力学

=kNi (lnN lnNi) =kNi ln(N/Ni)
如何实现预期的分离?
• 哪些组分能够从混合物中分离出来,哪些不能? • 组分能够分离到什么程度?
研究分离过程的热力学的就是要: 判断分离过程的方向和程度; 利用热力学知识促使某些组分向预期的方向移动。
本课程只讨论分离中最基本的热力学过程
热力学也是研究分离过程的最 重要的理论工具
➢ 研究分离过程中的能量、热量与功的守恒和转换问题。 例如:工业分离中,可通过热力学中功能关系的研究降低 分离过程能耗。
(Ni为第i种组分的摩尔数)
(接下页)
统计热力学方法推导混合熵
根据统计原理,混合后体系中各种分子平均分布几率:
=N / Ni
根据波茨曼分布,有:
Smix=kln =k ln(N / Ni) =k (lnN lnNi) (波茨曼常数k=1.3810-23 JK-1)
当N值较大时,可用Stirling公式:
2.1.1 封闭体系的化学平衡
热力学第一定律
设体系由状态1变到状态2时从环境吸热Q,对环境作功WT (包括体积功和非体积功),则体系的能量变化为:
U=U2 -U1 = Q -WT 规定体系吸热时Q0;放热时Q0 若体系发生微小变化,则:
dU=Q-WT 热力学第一定律:以热和功的形式传递的能量,必定等于 体系热力学能的变化。(能量的转换在数量上守恒)
为什么要研究分离过程的平衡状态
平衡状态比较简单。实际分离过程相当复杂,不易正确 地进行研究,故常用简单平衡体系模拟实际分离过程。
孤立体系都有自发趋向平衡的趋势。但不同体系建立平 衡的速度可能相差较大(化学动力学问题)。
分离过程都需要对物质进行输运。物质的输运是在化学 势梯度驱动下组分移向平衡位置的一种形式。
分子运动的动能 分子间相互作用势能(分离过程中起关键作用) 分子内原子和电子的振动、转动和平动能量
热力学第二定律
熵(S)表示组分扩散到空间不同位置、分配于 不同的相或处于不同能级的倾向。
• 熵的定义:可逆过程中体系从环境吸 收的热与温度的比值。 dS=(Q/T)可逆
• 对于一般过程,有: dSQ/T 或 TdSQ
平衡态应满足的4个条件
热平衡-系统内各部分以及环境温度相同,没有由于 温度不等而引起的能量传递。
力平衡-系统内各部分以及环境的各种力达到平衡, 没有由于力的不平衡而引起的坐标变化。
相平衡-相变化达到平衡,系统中各相之间没有物质 传递,每相的组成与物质数量不随时间而变。
化学平衡-化学反应达到平衡,没有由于化学反应而 产生的系统组成随时间的变化。
➢ 通过研究分离过程中物质的平衡与分布,结合分子间相互 作用与分子结构关系的研究,选择和建立高效的分离体系, 使分离过程朝向有利于分离的方向进行。
➢ 通过研究熵、自由能、化学势的变化来判断分离过程进行 的方向和限度。
2.1 化学平衡
物理化学中的系统与环境
系统(体系)—所研究的对象(物质和空间) 环境—系统以外有关的物质和空间 封闭系统—只有能量得失,没有物质进出; 敞开系统—既有能量得失,又有物质进出; 孤立系统—既无能量得失,又无物质进出。
分离熵与混合熵
在化学反应中,熵在能量转换中起次要作用;
• 在分离过程中,熵常常起关键作用。
混合熵(Smix)—将i种纯组分混合,若各组分间无相互作
用,则混合前后体系的熵变称为混合熵变(混合熵) 分离熵(Ssep)—混合过程的相反过程的熵变。
Ssep =-Smix (两种过程的始终态对应相反) • 绝热体系中混合后形成均相理想体系:
Smix>0 自发过程; Ssep < 0 非自发过程
统计热力学方法推导混合熵
设体系有i种独立组分,每种组分i由Ni个分子组成,体系总 共有N个分子。
xi
Ni
Ni
Ni N
i
(xi为混合后第i种组分摩尔分数)
N/NA=n Ni/NA=ni
(NA为阿佛伽德罗常数,6.0222102(接下页)
统计热力学方法推导混合熵
近似处理:
Smix=k (lnN lnNi) =k [N(lnN 1) Ni (lnNi 1) ] =k (NlnN N Ni lnNi + Ni )
因为: N= Ni 所以: Smix=k (Ni lnN Ni lnNi )
2. 分离过程热力学
2.1 化学平衡
2.1.1 封闭体系的化学平衡 2.1.2 敞开体系的化学平衡 2.1.3 有外场存在时的化学平衡
2.2 分配平衡
2.2.1 分配等温线 1.2.2 分配定律
2.3 相平衡
对分离的要求
分离因子尽可能高 所需分离剂或能量尽可能少 产品纯度尽可能高 设备尽可能便宜 操作尽可能简单 分离速度尽可能快
(热力学第二定律的数学表达式)
• 对于绝热体系或隔离体系 dS0 或 S 0
绝热(或隔离)体系所发生的一切变化,体系的熵不减。
热力学第一、二定律的综合公式
热力学第一定律: dU=Q-WT 热力学第二定律: TdSQ
(1) (2)
(2)式代入(1)式得:
dU TdS-WT =TdS-pdV-Wf
(式中Wf为非体积功)
大多数分离过程的输运速度比较快,可近似看成是在平 衡状态下完成的。
化学平衡研究大量分子运动的统计规律
体系自发变化的方向: dG0 (dG=0达到平衡) dG中包括体系的熵值和化学势: 熵: 描述体系中分子的无规程度,反映分子扩散至不同区 域、分布在不同能态以及占据不同相的倾向,每个分子 不可能处于相同状态,所以要用分子的统计分布描述; 化学势: 除与温度、压力有关外,还与液态物质活度、气 态物质逸度及其分布有关,因此研究化学平衡仍较复杂。

• 若体系只做体积功(W),则: U=Q -W= Q -(pV)
• 若体系变化为等压过程: U=Q -p(V2-V1)
• 体系从环境吸热Qp为: Qp=(U 2+pV2)-(U1+pV1) = (U+pV)= H 其中H定义为焓: HU+pV
体系能量的种类
• 整体运动的动能(分离化学中通常不考虑); • 体系在外场中的势能(部分分离过程涉及); • 体系的内能
相关主题