当前位置:文档之家› 化工热力学练习题

化工热力学练习题


37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.
节能的正确含义是减少用能过程中有效能向无效能转化。 绝热等熵膨胀比绝热节流膨胀的冷冻量大。 一切实际过程总能量守恒,过程熵产不为零,有有效能损失。 功的传递不会引起熵的流动。 某封闭系统经一可逆过程,作功 500kJ 且放热 1000kJ,则系统的熵变小于零。 自然界一切实际过程的熵产 Δ Sg 必大于零。 对于同一热力过程完成同一状态变化而言,其理想功 Wid 与有效能变化△EX 的关系是 Wid = Δ E X 。 有效能实际上就是理想功,即 E X = Wid 。 高压蒸汽的有效能较低压蒸汽的有效能为大,而且热转化为功的效率也较高。 热力学第二定律指出:热从低温物体传给高温物体是不可能的。 若一敞开系统经历—绝热、等熵过程,则该过程一定是可逆过程。 一切实际过程的能量守恒。 一切实际过程的有效能守恒。 系统经过一个绝热可逆过程,其熵没有变化。 Carnot制冷循环的制冷系数与制冷剂的性质有关。 当化学反应达到平衡时,反应的 Gibbs 自由焓变化值 ΔG 等于零。 化学反应的标准 Gibbs 自由焓变化 ΔG
cp=4.2kJ·kg-1·K-1(提示:不考虑压力和动能的稳定流动系统能量衡算方程为 ΔH = Q − WS , EX
ig = cig =(H-H )-T (S-S ) , 理想气体的焓变和熵变分别为 ΔH ig = cig p ln p ΔT , ΔS
Θ Θ Θ
T2 p − R ln 2 。 ) T1 p1
化工热力学练习题

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
是非题
纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。 气体混合物的virial系数,如B,C…,是温度和组成的函数。 纯物质的三相点随着所处的压力或温度的不同而改变。 象 dU=TdS-pdV 等热力学基本方程只能用于气体,而不能用于液体或固相。 一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。 由于剩余函数是在均相系统中引出的概念,故我们不能用剩余函数来计算汽化过程的热力学性质的变化。 逸度与压力的单位是相同的。 汽液两相平衡的条件是汽液两相的逸度相等。 纯流体的汽液平衡准则为 f V=f L。 在同一温度下,纯物质的饱和液体与饱和蒸汽的 Gibbs 函数相等。 符合热力学一致性检验的汽液平衡数据一定是真实可靠。 对于给定系统,在一定压力下形成恒沸物,其恒沸组成不变。
6. 有一逆流式换热器, 利用废气(其分子量为 16)加热空气, 空气由 0.1MPa, 293K 加热到 398K, 空 s-1; 而废气从 0.13MPa, 523K 冷却到 368K。 空气的等压热容为 1.04 kJ· kg-1· K-1, 气的流量为 1.5kg·
ˆi = H i ,solvent γ i xi 下列汽液平衡关系是错误的: pyiϕ
V ∗
从过量性质的定义可知,其数值越大,则溶液的非理想性越强。 一定压力下,纯物质的泡点温度和露点温度是相同的,且等于沸点。 对理想溶液来说,混合性质和过量性质是一致的。 对于理想溶液,遵守 Lewis-Landell 规则,等温下 p-x-y 图上的 p-x 线为一直线。 理想溶液一定符合 Lewis-Landell 规则和 Henry 定律。 符合 Lewis-Randall 规则或 Henry 定律的溶液一定是理想溶液。 二元溶液的Henry常数只与T、p有关,而与组成无关,而多元溶液的Henry常数则与T、p、组成都有关。 对于理想溶液,所有混合过程的性质变化均为零。 对于理想溶液,所有的过量性质都等于零。 在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。 均相混合物的总性质与纯组分性质之间的关系总是有 M t = 液液平衡一般出现在与理想溶液有较大正偏差的溶液中。 纯物质逸度的完整定义是,在等温条件下,dG=RTdlnf。 当 p→0 时,f/p→∞。 理想气体有 f=p, 而理想溶液有 ϕ i
ˆi ⎞ ⎛ϕ ˆ ⎟ ⎟ , ln f = ∑ yi ln f i ⎝ i⎠
( )
ˆ1 = 0.9381 , ϕ ˆ 2 = 0.8812 ,则混 19. 二元气体混合物的摩尔分数 yi = 0.3 ,在一定的 T,p 下, ϕ
合物的逸度系数为( )
A、0.8978 C、0.9381 20.
B、0.9097 D、0.9092
则气体的 ΔS 为: ( )
A、 R ln⎜ ⎜
⎛ V1 − b ⎞ ⎟ ⎟ ⎝ V2 − b ⎠
B、 R ln⎜ ⎜
⎛ V1 ⎞ ⎟ ⎟ ⎝ V2 ⎠ ⎛ V2 ⎞ ⎟ ⎟ ⎝ V1 ⎠
x
C、 R ln⎜ ⎜
⎛ V2 − b ⎞ ⎟ ⎟ ⎝ V1 − b ⎠
D、 R ln⎜ ⎜
16. Gibbs 函数变化与 p-V-T 关系为 G ig (T , p ) − G x = RT ln p ,则 G 的状态应该为( A、T 和 p 下纯理想气体 C、T 和单位压力下的纯理想气体 B、T 和零压下的纯理想气体 D、以上说法都不对

B、与能量衡算法具有相同功效 D、能抓住合理用能的实质之处

C、不能指出用能不合理之处
10. 自然界一切实际用能过程、从能量角度讲,应( A 同时满足热力学第一第二定律。 C 满足第二定律即可。 11. 温度为 T 下的过热纯蒸汽的压力 p ( A、大于该温度下的饱和蒸汽压 C、等于该温度下的饱和蒸汽压
SO2 的摩尔分数为( A、
C、

ε
7+ε
B、 D、
3ε 7+ε 1− ε 5+ε
ε
4+ε
23. 容器中开始有物质的量为 n0 的水蒸气,当分解成为氢气和氧气的反应进度为 ε 时,氧气的摩
尔分数为( )
A、
ε
n0 + 0.5ε
B、
n0 − ε n0 + 0.5ε
C、
0.5ε n0 + 0.5ε
D、

α 、 β 两相达到平衡,系统的热力学性质表述中错误的是
A、 μ i = μ i
α β
ˆα = f ˆβ B、 f i i
C、 T
p pi
s
α
=Tβ
D、 G = G
α
β
21. 气液平衡计算关系式 pyiφi = γ i xi pi sφi s exp ∫
为 。
Vi L dp , (i=1, 2,…,N) ,在中压时,上式可简化 RT
∑n M
i
i


= ϕi 。
因为 GE(或活度系数)模型是温度和组成的函数,故理论上 γi 与压力无关。 孤立系统的热力学能和熵都是一定值。 能量平衡关系 ΔH +
1 2 Δu + g ΔZ = Q − WS 对任何系统、任何过程均适用。 2
热力学第二定律告诉我们,熵产为零的过程,熵流也为零。 一切实际过程的总熵变大于等于零。 一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。 能量衡算法用于过程的合理用能分析与熵分析法具有相同的功效。 合理用能的总则是按质用能,按需供能。
⎛VL ⎞ A、 pyiφi = γ i xiφi s exp ⎜ i ( p − pi s ) ⎟ ⎝ RT ⎠ C、 pyi = γ i xi pi s
B、 pyiφi = γ i xi pi sφi s D、 pyi = xi pi s
22. 反应 H 2S+2H 2 O ⇔ 3H 2 +SO 2 初始物质含量 H2S 为 2mol,H2O 为 5mol。当反应进度为 ε 时,
i
⎞ ⎟, ⎠
i
⎛ f ⎞ ln f = ∑ yi ln ⎜ i ⎟ ⎝ yi ⎠
ˆ ), ∑ y ln(ϕ
ˆi ) , ∑ yi ln(ϕ
ˆ ln f = ∑ yi ln f i
( )
ˆ⎞ ⎛ f ln f = ∑ yi ln ⎜ i ⎟ ⎜y ⎟ ⎝ i⎠
D、 ln ϕ =
∑ y ln⎜ ⎜y
i
纯组分的摩尔体积是V1,V2,试求出 V 2 和V表达式?
4. 某二元混合物,在一定的温度和压力下,其逸度表达式为 ln f = a + bx2 − cx2 2 ,a, b, c 为常数,
试求 G E / RT , ln γ 1 , ln γ 2 的相应关系式(二组分均以 Lewis—Randall 规则为标准态逸度) 。 由于输送过程的热量损失, 到使用单位时, 水温已降到 70℃, 5. 某厂有一输送 80℃的热水的管道, 试求水温降低过程的每 kg 水的热损失 Q 与有效能损失 WL,设大气温度为 300K,水的等压热容
2. 假设O2在20℃、0.1MPa下的H、S为零,用三参数对应态原理求O2在300℃、9MPa下的H、S。
已知O2在理想气体状态下的比热容为 c ig 。 (画出计算路线图,说明计算需要的模型和物性数据, p 写出计算过程,不需要具体计算结果) 。
2 ,并已知 3. 在一定的温度和压力下,二元溶液中的组分1的偏摩尔体积如服从下式 V 1 = V1 + α x2
Θ
可以用来判断反应进行的方向。

选择题
) 。
1. 从工程实际出发,合理用能分析的实质是( A、过程是否最经济 B、损小
2. 稳定流动系统的能量累积等于零,熵的累积则 ( ) B,不确定 A,大于零 C,小于零 D,等于零 3. 从合理用能的角度出发,流体流动过程中,液体的流速比气体的流速( A、大 B、小 C、相等 D、可大可小
相关主题