当前位置:文档之家› 工程力学答案整理

工程力学答案整理

思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。

答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。

联系是:在发生对流换热的同时必然伴生有导热。

导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。

能量平衡分析1-1夏天的早晨,一个大学生离开宿舍时的温度为20℃。

他希望晚上回到房间时的温度能够低一些,于是早上离开时紧闭门窗,并打开了一个功率为15W 的电风扇,该房间的长、宽、高分别为5m 、3m 、2.5m 。

如果该大学生10h 以后回来,试估算房间的平均温度是多少? 解:因关闭门窗户后,相当于隔绝了房间内外的热交换,但是电风扇要在房间内做工产生热量:为J 54000036001015=⨯⨯全部被房间的空气吸收而升温,空气在20℃时的比热为:1.005KJ/Kg.K,密度为1.205Kg/m 3,所以89.11005.1205.15.235105400003=⨯⨯⨯⨯⨯=∆-t当他回来时房间的温度近似为32℃。

1-9 一砖墙的表面积为122m ,厚为260mm ,平均导热系数为1.5W/(m.K )。

设面向室内的表面温度为25℃,而外表面温度为-5℃,试确定次砖墙向外界散失的热量。

解:根据傅立叶定律有:WtA9.207626.05)(25125.1=--⨯⨯=∆=Φδλ1-10 一炉子的炉墙厚13cm ,总面积为202m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。

试计算通过炉墙的热损失。

如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式KW t A Q 2.7513.0)50520(2004.1=-⨯⨯=∆=δλ每天用煤d Kg /9.3101009.22.753600244=⨯⨯⨯1-11 夏天,阳光照耀在一厚度为40mm 的用层压板制成的木门外表面上,用热流计测得木门内表面热流密度为15W/m 2。

外变面温度为40℃,内表面温度为30℃。

试估算此木门在厚度方向上的导热系数。

解:δλtq ∆=,)./(06.0304004.015K m W t q =-⨯=∆=δλ1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式()f w t t rlh q -=π2所以()f w t t d qh -=π=49.33W/(m 2.k)1-13 对置于水中的不锈钢束采用电加热的方法进行压力为1.013Pa 510⨯的饱和水沸腾换热实验。

测得加热功率为50W ,不锈钢管束外径为4mm ,加热段长10mm ,表面平均温度为109℃。

试计算此时沸腾换热的表面传热系数。

解:根据牛顿冷却公式有 t Ah ∆=Φ2.4423=∆Φ=∴t A h W/(m 2.K)1-18 宇宙空间可近似地看成为0K 的真空空间。

一航天器在太空中飞行,其外表面平均温度为250℃,表面发射率为0.7,试计算航天器单位表面上的换热量。

解:4T q εσ==0.7155250)./(1067.54428=⨯⨯⨯-K m W W/2m 1-19 在1-14题目中,如果把芯片及底板置于一个封闭的机壳内,机壳的平均温度为20℃,芯片的表面黑度为0.9,其余条件不变,试确定芯片的最大允许功率。

解:()00014.0])27320()27385[(1067.59.04484241⨯+-+⨯⨯-=Φ-=辐射T T A σε P 辐射对流+ΦΦ=1.657W 1-20 半径为0.5 m 的球状航天器在太空中飞行,其表面发射率为0.8。

航天器内电子元件的散热总共为175W 。

假设航天器没有从宇宙空间接受任何辐射能量,试估算其表面的平均温度。

解:电子原件的发热量=航天器的辐射散热量即:4T Q εσ=4A QT εσ=∴ =187K1-23 在锅炉炉膛的水冷壁管子中有沸腾水流过,以吸收管外的火焰及烟气辐射给管壁的热量。

试针对下列三种情况,画出从烟气到水的传热过程的温度分布曲线: (1) 管子内外均干净;(2) 管内结水垢,但沸腾水温与烟气温度保持不变;(3) 管内结水垢,管外结灰垢,沸腾水温及锅炉的产气率不变。

解:1-24 在附图所示的稳态热传递过程中,已知: 4601=w t ℃,51=δmm ,5.02=δmm ,5.461=λW/(m.K),16.12=λW/(m.K),58002=h W/(m 2.K)。

试计算单位面积所传递的热量。

解:由题意得00071.0122111=++=λδλδh R ZZ fw Z R t t R t q -=∆=∴ =225.35KW℃,2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。

已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。

为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。

设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。

环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。

解:热损失为()()22111f f BBA A fwf t t h t t h t t q -+-=+-=λδλδ又50=fw t ℃;B A δδ=联立得m m B A 039.0;078.0==δδ2-18 在一根外径为100mm 的热力管道外拟包覆两层绝热材料,一种材料的导热系数为0.06)./(K m W ,另一种为0.12)./(K m W ,两种材料的厚度都取为75mm ,试比较把导热系数小的材料紧贴管壁,及把导热系数大的材料紧贴管壁这两种方法对保温效果的影响,这种影响影响对于平壁的情形是否存在?假设在两种做法中,绝热层内外表面的总温差保持不变。

解:将导热系数小的材料紧贴壁管()19.19227550757550ln 2507550ln 212121t t l l l t t -=⎪⎭⎫⎝⎛++++⎪⎭⎫ ⎝⎛+-=Φππλλπ将导热系数大的材料紧贴壁管则()()47.1526.1ln 5.2ln 2211221t t l t t l -=+-=Φ'πλλπ故导热系数大的材料紧贴管壁其保温效果好。

若为平壁,则平壁221121λδλδ+-=t t q由于21δδδ==所以不存在此问题。

2-20 一直径为d 长为l 的圆杆,两端分别与温度为1t 及2t 的表面接触,杆的导热系数λ为常数。

试对下列两种情形列出杆中温度的微分方程式及边界条件,并求解之: 杆的侧面是绝热的;杆的侧面与四周流体间有稳定的对流换热,平均表面传热系数为h ,流体温度ft 小于1t 及2t 。

解:① 421d x t πλφ∂∂-=,4)(22d x dx xtt πλφ∂∂∂+∂-=,在侧面绝热时,有21φφ=得微分方程为:022=∂∂x t,边界条件为:21,,0t t l x t t x ==== 解微分方程得:112t x l tt t +-=②)(3f t t ddxh -=πφ,根据条件有:321φφφ+=得微分方程为:0)(422=--∂∂f t t d hx t λ,边界条件为:21,,0t t l x t t x ====解微分方程得:x d h x d h feC eC t t )2(2)2(1λλ-+=-代入边界条件得:x dh ldh l dh f f l dh x dh ldh l dh l dh f f f eee t t t t eeeeet t t t t t λλλλλλλλ222212222212)()()()(--------+----=-3-6 一初始温度为t 0的物体,被置于室温为t ∞的房间中。

物体表面的发射率为ε,表面与空气间的换热系数为h 。

物体的体集积为V ,参数与换热的面积为A ,比热容和密度分别为c 及ρ。

物体的内热阻可忽略不计,试列出物体温度随时间变化的微分方程式。

解:由题意知,固体温度始终均匀一致,所以可按集总热容系统处理 固体通过热辐射散到周围的热量为:)(441∞-=T T A q σ 固体通过对流散到周围的热量为: )(2∞-=T T hA q固体散出的总热量等于其焓的减小τρd d cvq q t-=+21即τρσd d cvT T hA T T A t -=-+-∞∞)()(443-10 一热电偶热接点可近似地看成为球形,初始温度为250C ,后被置于温度为2000C 地气流中。

问欲使热电偶的时间常数s c 1=τ热接点的直径应为多大?以知热接点与气流间的表面传热系数为)/(352K m W ⋅,热接点的物性为:)/(20k m W ⋅=λ,3/8500)/(400m kg k kg J c =⋅=ρ,,如果气流与热接点之间还有辐射换热,对所需的热接点直径有何影响?热电偶引线的影响忽略不计。

解:由于热电偶的直径很小,一般满足集总参数法,时间常数为:hA cvc ρτ=故m c h t R A V c 51029.10400850035013//-⨯=⨯⨯===ρ热电偶的直径: m R d 617.01029.103225=⨯⨯⨯==-验证Bi 数是否满足集总参数法0333.00018.0201029.10350)/(5<<=⨯⨯==-λA V h Bi v故满足集总参数法条件。

若热接点与气流间存在辐射换热,则总表面传热系数h (包括对流和辐射)增加,由hA cvc ρτ=知,保持c τ不变,可使V/A 增加,即热接点直径增加。

4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。

试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ3,2,1,tan ==n Binn μμ并用计算机查明,当2.02≥=δτa Fo 时用式(3-19)表示的级数的第一项代替整个级数(计算中用前六项之和来替代)可能引起的误差。

Bi n n =μμtanFo=0.2及0.24时计算结果的对比列于下表:4),其余两个界面与温度为f t 的流体对流换热,h 均匀,内热源强度为Φ 。

相关主题