当前位置:文档之家› 高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。

质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。

已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。

【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。

设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。

取向左为正方向。

根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。

从A 到C 由机械能守恒定律得:2211111 222C m v m v mgR =+ 由平抛运动的规律有:x =v C t 121122R gt =联立整理得410()4x R R =-根据数学知识知当4R =10-4R即R =1.25m 时,水平位移最大为x =5m3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。

为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。

(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。

(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。

【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。

【解析】 【详解】(1)玩具滑车到达D 点时,由牛顿第二定律:2DD v F mg m R-=解得2210=404=80N 10D D v F mg m R =++⨯;(2)若无传送带时,由平抛知识可知:D x v t =解得1s t =如果传送带保持不动,则当小车滑到最右端时,由动能定理:221122D mv mv mgL μ-=- 解得v =6m/s因为6m/s 2m/s v ==,则小车从右端轮子最高点做平抛运动,则落水点距离传送带右端的水平距离:'6m x vt ==(3)①若传送带的速度v ≤6m/s ,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s ,落水点距离传送带右端的水平距离为6m ; ②若小车在传送带上一直加速,则到达右端时的速度满足'221122D mv mv mgL μ-= 解得'v =若传送带的速度v ≥,则小车在传送带上运动时一直加速,则到达右端的速度为,落水点距离传送带右端的水平距离为x vt ==;③若传送带的速度10m/s≥v ≥6m/s ,则小车在传送带上运动时先减速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt=v m ;④若传送带的速度≥v ≥10m/s ,则小车在传送带上运动时先加速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt =v m 。

4.如图所示,小滑块(视为质点)的质量m = 1kg ;固定在地面上的斜面AB 的倾角θ=37°、长s =1m ,点A 和斜面最低点B 之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。

点B 与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O 点另一端恰好在B 点。

认为滑块通过点B 前、后速度大小不变;最大静摩擦力等于滑动摩擦力。

取g =10m/s 2 ,sin37° =0.6,cos37° =0.8,不计空气阻力。

(1)若设置μ=0,将滑块从A 点由静止释放,求滑块从点A 运动到点B 所用的时间。

(2)若滑块在A 点以v 0=lm/s 的初速度沿斜面下滑,最终停止于B 点,求μ的取值范围。

【答案】(1)3t =s ;(2)13324μ≤≤或31316μ=。

【解析】 【分析】 【详解】(1)设滑块从点A 运动到点B 的过程中,加速度大小为a ,运动时间为t ,则由牛顿第二定律和运动学公式得sin mg ma θ=212s at =解得33t =s (2)滑块最终停在B 点,有两种可能:①滑块恰好能从A 下滑到B ,设动摩擦因数为1μ,由动能定律得:2101sin cos 02mg s mg s mv θμθ-=-g g解得11316μ=②滑块在斜面AB 和水平地面间多次反复运动,最终停止于B 点,当滑块恰好能返回A 点,由动能定理得2201cos 202mg s mv μθ-=-g解得2132μ=此后,滑块沿斜面下滑,在光滑水平地面和斜面之间多次反复运动,最终停止于B 点。

当滑块恰好能静止在斜面上,则有3sin cos mg mg θμθ=解得334μ=所以,当23μμμ≤≤,即13324μ≤≤时,滑块在斜面AB 和水平地面间多次反复运动,最终停止于B 点。

综上所述,μ的取值范围是13324μ≤≤或31316μ=。

5.如图,在竖直平面内,半径R =0.5m 的光滑圆弧轨道ABC 与粗糙的足够长斜面CD 相切于C 点,CD 与水平面的夹角θ=37°,B 是轨道最低点,其最大承受力F m =21N ,过A 点的切线沿竖直方向。

现有一质量m =0.1kg 的小物块,从A 点正上方的P 点由静止落下。

已知物块与斜面之间的动摩擦因数μ=0.5.取sin37°=0.6.co37°=0.8,g=10m/s 2,不计空气阻力。

(1)为保证轨道不会被破坏,求P 、A 间的最大高度差H 及物块能沿斜面上滑的最大距离L ; (2)若P 、A 间的高度差h =3.6m ,求系统最终因摩擦所产生的总热量Q 。

【答案】(1) 4.5m ,4.9m ;(2) 4J 【解析】 【详解】(1)设物块在B 点的最大速度为v B ,由牛顿第二定律得:2Bm v F mg m R-=从P 到B,由动能定理得21()02B mg H R mv +=- 解得H =4.5m物块从B 点运动到斜面最高处的过程中,根据动能定理得:-mg [R (1-cos37°)+L sin37°]-μmg cos37°•L =2102B mv -解得L =4.9m(3)物块在斜面上,由于mg sin37°>μmg cos37°,物块不会停在斜面上,物块最后以B 点为中心,C 点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量Q =mg (h +R cos37°)解得Q =4J6.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '=【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-= 由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.7.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.8.如图所示在竖直平面内,光滑曲面AB与长度l=3m的水平传送带BC平滑连接于B点,传送带BC右端连接内壁光滑、半径r=0.55m的四分之一细圆管CD,圆管内径略大于物块尺寸,管口D端正下方直立一根劲度系数为k=50N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D端平齐.一个质量为m=0.5kg的物块(可视为质点)从曲面上P点静止释放,P点距BC的高度为h=0.8m.(已知弹簧的弹性势能E p与弹簧的劲度系数k和形变量x的关系是:E p=12kx2,水平传送带与物间的动摩擦因数μ=0.4,重力加速度g取10m/s2.)求:(1)若传送带静止不动物块在水平传送带BC上前进的距离;(2)若传送带向右匀速运动的速度v0=2m/s,物块刚进入细圆管CD时对管道的弹力,物块在压缩弹簧过程中的最大速度(压缩弹簧过程未超过弹性限度);(3)若传送带向右匀速运动的速度v0=2m/s,物块从第一次进入细圆管后将做周期性的运动.由于物块与传送带发生相对运动,一个周期内带动传送带的电动机多消耗的电能.【答案】(1)2m(2)4m/s(3)4J【解析】【分析】【详解】(1)物块从P点静止释放到停在传送带某处的过程中,根据动能定理得mgh-μmgx=0-0解得x =2m;(2)若传送带向右匀速运动的速度v0=2m/s,因为传送带长度l=3m大于2m,所以物块到达C点的速度v C=2m/s物块经过管道C点,根据牛顿第二定律得mg-N=m2 C v r解得,管道对物块的弹力N=1511N≈1.36N,方向竖直向上根据牛顿第三定律得知,物块对管道的弹力大小N′=N≈1.36N,方向竖直向下.物块从C点运动到速度最大的过程,根据平衡条件得mg =kx′得x ′=0.1m由动能定理得mg (r +x ′)-21'2kx =212m mv -212C mv 解得,最大速度v m =4m/s(3)物块再次回到C 点的速度仍为2m/s ,它在传送带上先向左匀减速运动到速度为零,再向右匀加速运动至C 点,速度大小仍为2m/s ,因此,电动机多消耗的电能即为物块与传送带之间的摩擦生热.物块向左减速的位移x 1=22C v g μ=2220.410⨯⨯=0.5m 物块与传送带间的相对位移△x 1=x 1+v 0•0v gμ 解得△x 1=1.5m物块向右加速运动的位移x 2=22Cv gμ=0.5m 物块与传送带间的相对位移△x 2=v 0•0v gμ-x 2=0.5m因此,一个周期内带动传送带的电动机多消耗的电能是E =μmg (△x 1+△x 2) 解得:E =4J9.如图,质量分别为1kg 和3kg 的玩具小车A 、B 静置在水平地面上,两车相距s =8m 。

相关主题