生物制氢PPT课件
光合微生物产氢
投入:光能 产出:氢气
光合微生物产氢
直接光解产氢 间接光解产氢 光发酵产氢
• 光能
直接光解产氢
光能自养型微生物
氢气
• 特点:直接利用光能产生氢气
例-绿藻
• 绿藻属于人类已知的最古老植物之一,通过 进化形成了能生活在两个截然不同的环境中 的本领。
• 当绿藻生活在平常的空气和阳光中时,它像 其他植物一样具有光合作用。光合作用利用 阳光,水和二氧化碳生成氧气和植物维持生 命所需要的化学物质。
光合微生物制氢的总况
• 优势明显:以太阳能为能源、以水为原料,能量 消耗小,生产过程清洁,受到各国生物制氢单位 的关注。
• 现况无奈:目前光合微生物制氢离实用化还有相 当距离,光能转化率低,要大量制氢,就需要很 大的受光面积,还没有满意的产氢藻。
• 仍有希望:但普遍认为,光合生物制氢很有发展 前景。据美国太阳能研究中心估算,如果光能转 化率能达到10%,就可以同其他能源竞争。
• 然而当绿藻缺少硫这种关键性的营养 成分,并且被置于无氧和光照环境中 时,绿藻就会回到另一种生存方式中 以便存活下来,在这种情况下,绿藻 就会产生 光能
光能自养型微生物(光合作用)
有机物
• 光能
光能自养型微生物(产氢过程)
氢气
特点:先利用光能生产有机物,再利用光能分解 有机物而产生氢气
• 当这种适应了厌氧条件的蓝细菌被放回光 照且厌氧的环境中时,产氢速率可以大幅 度提高
• 它的光合作用正常后,则停止产氢
固氮酶:催化还原氮气成氨,氢气作为副产物产生
可逆氢酶:能够氧化合成氢气 吸氢酶:氧化由固氮酶催化产生的氢气
光发酵产氢
有机物 光能异养型微生物
光能
氢气
特点:利用光能分解有机物,并产 生氢气
原理
• 此类微生物无PSII光合系统,无法利用水来 产生氢离子。
• 它们而是利用光能将有机物分解,产生氢 离子和高能电子。产氢酶再利用这些中间 产物和ATP来产生氢气。
例-无硫紫细菌
无硫紫细菌在缺氮条件下,用光能和还原性底 物产生氢气 : C6H12O6 + 12H2O Light energy 12H2 + 6CO2 代表菌株为: Rhodospirillum rubrumL: 180 ml H2/L of
culture/h; Rb.spheroides: 3.6-4.0 L H2/L or
immobilized culture/h 已有将这类微生物光发酵产氢用于处理有机 废水的实例
• 目前研究得比较多的光合产氢微生物还有 颤藻属、深红红螺菌、球形红假单胞菌、 深红红假单胞菌、球形红微菌、液泡外红 螺菌等。
目前的主要问题
• 微生物制氢的反应机理没没有得到很好的 研究(包括各种遗传机制、能量代谢与物 质代谢过程的研究),没有建立起完善的 理论体系,对科学研究的更快发展不利。
微生物为何能产生氢气??
微生物产氢的关键因素-产氢酶
• 产氢过程中能够使质子还原为氢气的酶有 固氮酶和氢酶两种。
• 固氮酶是由两种蛋白质分子构成的金属复 合蛋白酶,能催化还原氮气成氨,氢气作为 副产物产生。
• 现有的研究大多为实验室内进行的小型试 验,采用批式培养的方法居多,利用连续 流培养产氢的报道较少。试验数据亦为短 期的试验结果,连续稳定运行期超过40天 的研究实例少见报道。即便是瞬时产氢率 较高,长期连续运行能否获得较高产氢量 尚待探讨
• 许多研究还都集中在细菌和酶固定化技术 上,离工业化生产还有很大差距
• 1.生长较快,在短时间内可达到较高的细胞 浓度
• 2.产氢速率快,转化率高。其中Rubrivivax gelatinosus能够100%转换气态的CO成H2
微生物水气转换制氢
• 水气转换是CO与H2O转化为CO2和H2的反 应。以甲烷或水煤气为起点的制氢工业均 涉及CO的转换,因此水气转换是工业制氢 的一个基础反应。水气转换属放热反应, 高温不利于氢的生成,然而高温有利于动 力学速率提高。
• 过去是用化学的方法进行水气转化
• 现在出现了利用微生物进行水气转化的方 法
6.1.2 生物制氢
优点:
• 耗能低、效率高; • 清洁、节能和可再生; • 原料成本低,制氢过程不污染环境; • 一些生物制氢过程具有较好的环境效益
生物制氢的方法
生物制氢研究发展历程
• 100多年前科学家们发现在微生物作用下, 通过蚁酸钙的发酵可以从水中制取氢气。
• 1931年,Stephenson发现了细菌中的氢 酶可以催化氢气与氢离子的可逆反应。
• 氢酶是微生物体内调节氢代谢的活性蛋白。 氢酶又可以分为吸氢酶、可逆性氢酶。氢 酶在微生物中主要功能是吸收固氮酶产生 的氢气。可逆性氢酶的吸氢过程是可逆的, 吸氢酶的吸氢过程是不可逆的。因此从产 氢需求出发,常构建吸氢酶基因缺陷的突 变体以增加产氢的速率。
微生物制氢的三大方法
• 1.光合微生物产氢 • 2.微生物水气转换制氢 • 3.暗发酵制氢
• 1937年,Nakamura发现光合细菌能在黑 暗中放氢。
• 1942年,Gaffron和Rubin发现海藻-栅 藻能通过光合作用放出氢气。
• 1949年,Gest等研究证明深红红螺菌在有 机碳的存在下可以放出氢气
• 1976年,孙国超等分离出了产氢量和产氢 时间都较可观的产氢菌。
• 1984年,日本的Miyake等筛选出了平均 产氢率达18.4微升/h*mg的非硫光合细菌
• 目前己发现两种无色硫细菌Rubrivivax gelatinosus和Rubrivivax rubrum能进行 如下反应 :
• CO(g) + H2O(l) CO2(g) + H2(g)
• 这提供了利用合成气转换制氢的新途径
• 微生物水气转换制氢
投入:CO与H2O
微生物
产出: CO2和H2
这两种无色硫细菌的优点:
总反应式为: 光合作用 12H2O + 6CO2 Light energy C6H12O6 +6O2 +6H2O 产氢反应 C6H12O6 + 12H2O Light energy 12H2 +6CO2 +6H2O
例-蓝细菌
• 蓝细菌主要分为:蓝绿藻、蓝藻纲类、 蓝藻类
• 当蓝细菌处于厌氧黑暗环境中一段时间后, 开始合成产氢酶