当前位置:文档之家› 伽马射线的吸收实验报告

伽马射线的吸收实验报告

(3 )实验3:伽马射线的吸收实验目的1 • 了解 射线在物质中的吸收规律。

2。

测量 射线在不同物质中的吸收系数。

3∙学习正确安排实验条件的方法。

内容1. 选择良好的实验条件,测量 60Co (或137CS)的 射线在一组吸收片(铅、 铜、或铝)中的吸收曲线,并由半吸收厚度定出线性吸收系数。

2.用最小二乘直线拟合的方法求线性吸收系数。

原理1.窄束射线在物质中的衰减规律射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当 射线能量大于1.02MeV 时,才有可能产生电子对效应)。

准直成平行束的射线,通常称为窄束射线。

单能的窄束 射线在穿过物质时,其强度就会减弱,这种现象称为 射线的吸收。

射线强度的衰减服从指数规律,即=1性吸收系数(P= σr N ,单位为Cm )。

显然μ的大小反映了物质吸收 Y 射线能力的 大小。

由于在相同的实验条件下, 某一时刻的计数率 n 总是与该时刻的 射线强度I 成正 比,因此I 与X 的关系也可以用 n 与X 的关系来代替。

由式我们可以得到—Xn = n °e(2 )可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直 线的斜率的绝对值就是线性吸收系数J.r NXI o e∣°e'x其中∣o ,∣分别是穿过物质前、后的射线强度,X 是射线穿过的物质的厚度(单位 为cm ), σr 是三种效应截面之和,N 是吸收物质单位体积中的原子数,J是物质的线In n=l n n °- JX10计⅛104専,LO3IO1厚反。

K图1 γ⅛⅛⅛S⅛⅛X由于射线与物质相互作用的三种效应的截面都是随入射射线的能量E和吸收物质的原子序数Z而变化,因此单能射线的线性吸收系数是物质的原子序数 Z和能量E L f的函数.式中^Ph、%、”p分别为光电、康普顿、电子对效应的线性吸收系数。

其中物质对射线的吸收系数也可以用质量吸收系数^m来表示。

μ OCZ5U OCGZM OCP Z2图2给出了铅、锡、铜、铝对射线的线性吸收系数与射线能量的关系曲线。

(8)(8)IU 叹 OJ 1 P S W 28 IOO^ AW⅛M∕mc i图 2 铅、锡。

铜F S ⅛ γ ⅛⅛⅛¾4⅛^⅛^¾⅛^⅛此时指数衰减规律可表示为mχmI o eμ其中Jm 表示物质的质量吸收系数 (”m =-单位是Cm 2∕g, P 是物质的密度,它的单八口2位是g/cm ).X m表示物质的质量厚度无关,因此使用质量吸收系数比线性吸收系数要更方便些。

物质对 射线的吸收系数也常用“半吸收厚度”表示。

所谓“半吸收厚度"就是 使入射的 射线强度减弱到一半时的吸收物质的厚度,记作d l。

从(1)式可以得出d I(X m =X. J 单位是g∕cm 2)。

因为式中N A 是阿佛加德罗常数,N AAA 是原子核质量数。

仟 Ph =C 二 P ) 所以质量吸收系数与物质和物理状态] 」 __ 1 亠 丄一L"T R --- ---- 「d12 In 2 _ 0.693-μ- -μ2 2 和”的关系为(8)由此可见,d 1也是物质的原子序数 Z 和 射线能量E r的函数.通常利用半吸收厚 2度可以粗略定出 射线的能量。

由上可知,要求线性吸收系数时,可以由吸收计算斜率的方法得到,也可以由吸 收曲线图解求出半吸收厚度从而推算得到。

以上两种方法都是用作图方法求得线性吸 收系数的,其特点是直观、简单,但误差比较大。

比较好的方法是用最小二乘方法直 线拟合来求得线性吸收系数。

∩ I] 1」 ______ J ________ LU处 f rff ΛJ 賞 2J 购力 m 3 半吸收厚度卒 卩 射线J ⅞L ⅛⅛⅛关茶对于一系列的吸收片厚度 X 1、X 2, X k (假定X i没有误差),经计算得到一系列的计数率i=NL,这里t i是相应于N i的测量时间,利用(2)式tin = n 0e_x则 In n= In n ^ JX令 y=ln n则y =aX b其中斜率〉 (即为-丄)与截距b 的计算中心公式为半吸收辱度,记录下来的脉冲数可能有五个来源(见图 4),图中[W][Wxln n ]- [Wx ][W ln n ]α = ------------------------------------[W ][Wx 2] —[wx]2U[W In n][Wx 2] — [Wxln n ][Wx ]b 2厂[W ][Wx 2] - [Wx ]2k式中[Wx]=二W i X i (W i 表示y ^ In 口的权重),其它类似.i 4W i 的计算如下(假定本底不大和本底误差可以忽略)a 和b 的标准误差为2 .关于Y 吸收实验条件的安排上面的讨论都是指的窄束 射线的吸收过程.从实际的实验条件来看,探测器σ Y iσIn n iσn i ni一 JN i2 Y i匚2In n i-a[W] 22 _' Y[W][Wx ]-[Wx] 2[Wx ]Cr Y.,[W][Wx 2] -[Wx]2式中二Y =2 [W i V i ] k-2,Vi =Yi-?i ,其中圈1 y吸收示竜国(1)透过吸收物质的射线;(2)由周围物质散射而进入的射线;(3)与吸收物质发生小角散射而进入的次级射线;(4)在探测器对源所张立体角以外的射线被吸收物质散射而进入;(5)本底.其中只有第一类射线是我们要的透射强度,因此选择良好的实验条件以减少后四类射线的影响,就成为获得准确结果的主要因素。

实验时要合理的选择吸收片与放射源,吸收片与探测器之间的相对位置以获得良好的实验结果。

装置实验装置的示意图见图 5图5 F吸收实验裝蛊探测器,(计数管探头,FJ—365,—台及计数管,FJ—104 ,-支或Nal( Tl)闪烁计数器,FJ—367,一个);自动定标器,FH-408,—台;放射源,60Co (或137CS)毫居级,1个;吸收片,铅、铜、铝,若干片。

步骤1 •调整装置,使放射源、准直孔、探测器的中心处在一条直线上。

2. 选择吸收片的合适位置,使小角散射的次级射线影响较小(称为良好的几何条件)和影响较大(称为不好的几何条件)的两种情况下,各做一条对铅材料的吸收曲线,各点统计误差要求〈(2—3)%3. 在良好的几何条件下,做一条对铜或铝的吸收曲线,各点的统计误差要求〈(2-3)%。

4. 测量射线在铅和铜中的吸收曲线时,所加吸收片的总厚度应不小于三个半吸收厚度,对铝要求不小于两个半吸收厚度。

实验数据处理分析1. 最差几何条件铁材料Lin ear model Poly1:f(x) = p1*x + p2CoeffiCie nts (With 95% Con fide nce boun ds):pl = —0.5269 (-0。

5453,—0.5085)p2 = 8.453 (8.407, 8.498)Good ness of fit:SSE: 0.01336R—SqUare: 0。

9976AdjUSted R—SqUare: 0.9973RMSE: 0.03656最差几何築件铁材料伽马吸收曲线15 >⅛(cιn)2. 最优几何条件铁材料LIn ear model Poly1:f(x) = p1*x + p2CoeffiCie nts (with 95% Con fide nce boun ds):pl = —0。

6371 (-0。

6633,—0。

611)p2 = 8。

418 (8。

364, 8。

472)Good ness of fit:SSE: 0.01235R-SqUare: 0.9975AdjUSted R-SqUare: 0。

9972RMSE: 0.0393最优几何乗件轶材料伽马服收曲线θ.5*实验数据点—最小二乘法拟合直绒7。

51 52 2。

53 3.5I5 J⅛(Cm)3. 最差几何条件铅材料Lin ear model Poly1:f(x) = p1*x + p2COeffiCie nts (With 95% Con fide nce boun ds):p1 = -1.018 (—1。

038,—0.9974)p2 = 8。

428 (8。

4, 8。

456)Good ness of fit:SSE: 0.002886R-SqUare: 0。

9994AdjUSted R-SqUare: 0.9993RMSE: 0.01899∩5 1⅛ 度:CrTl ) 4. 最优几何条件铅材料Lin ear model Poly1:f(x ) = p1*x + p2COeffiCie nts (With 95% Con fide nce boun ds ):pl = -1.158 (-1.187, -1。

129)p2 =8.409 (8.377, 8.441)Good ness of fit:SSE: 0.002165R-SqUare : 0.9994AdjUSted R-SqUare : 0。

9993RMSE :0.019 最差匚何聚件裙杯科伽马吸妆t⅛址T r——最小二⅛.±⅛合直线∙⅛方法一:Fe:U 1=0。

6371 d1∕2=0。

693∕u1=1。

0877cm Pb:u2=—1.158 d1∕2=0.693∕1。

158=0.5984cm方法二:从计数值达到初始值的一半:最优几何条件铁:d1∕2=1。

2cm最优几何条件铅:d1∕2=0。

633cm结果分析:从铁和铅的吸收曲线上看, 最优和最差的斜率相近, 且最优条件斜率大, 这是符合理论的。

至于从计数值上直接看出半吸收厚度与方法一对于铁相差较大,统计涨落大的原因还有一大部分原因在于平均加铁的厚度太大,导致不够精细。

思考题1 。

什么叫射线被吸收了?为什么说射线通过物质时没有确定的射程?2. 什么样的几何布置条件才是良好的几何条件?在图5所示的实验装置图中吸片的位置应当放在靠近放射源还是靠近计数管的地方?3. 试分析在不好的几何条件下,测出的半吸收厚度是偏大还是偏小?为什么?4. 试述本试验中的本底应如何测量。

又本底的误差应如何考虑?5. 如果事先并不知道射线的能量,怎样才能合理地选择每次添加的吸收片厚度,使测量结果既迅速,结果也比较准确?1. 伽马射线与物质相互作用,能量耗尽在靶物质里。

伽马射线与物质的相互作用和带电粒子与物质相互作用有着显著的不同。

伽马光子不带电,它不像带电粒子那样直接与靶物质原子电子发生库仑碰撞而使之电离或者激发,或者与靶物质核发生碰撞导致弹性碰撞能量损失或者辐射损失, 因而不能像带电粒子那样用核阻止本领和射程来描述光子在物质中的行为。

相关主题