精心整理20 电与磁第1节 磁现象 磁场一、磁现象1、磁性:若物体能够吸引铁、钴、镍等物质,我们就说该物体具有磁性。
铁、钴、镍等物质称为磁性材料。
具有磁性的物体有两个特点:一是能吸引磁性材料,非磁,23极,北极(N 4(1(2有一段发生排斥现象,说明该物体具有磁性;若与小磁针的两极均表现为相互吸引,则说明该物体没有磁性。
④根据磁极的磁性最强判断:若有A 、B 两个外形完全相同的钢棒,已知一个有磁性,另一个没有磁性,区分它们的方法是:将A 的一端从B 的左端向右端滑动,若在滑动过程中发现吸引力的大小不变,则说明A 有磁性;若发现A 、B 间的作用力有大小变化,则说明B 有磁性。
(3)磁体和带电体的对比(1)一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。
(212的。
34(1)概念:把小磁针在磁场中的排列情况,用一些带箭头的曲线画出来,可以方便,形象地描述磁场,这样的曲线叫磁感线。
(2)方向:磁感线是一些有方向的曲线,磁感线上某一点的切线方向与放在该点的小磁针静止时北极的指向一致,也与该点的磁场方向一致。
(3)理解磁感线时应注意的几个问题①磁场是真实存在于磁体周围的一种特殊物质,而磁感线是人们为了直观、形象地描述磁场的方向和分布情况而引入的带方向的曲线,它并不是真实存在的。
②磁感线是有方向的,曲线上任意一点的切线方向就是该点的磁场方向。
③磁感线分布的疏密可以表示磁场的强弱,磁体的两极处磁感线最密,表示在其两极处磁场最强。
④磁体周围磁感线都是从磁体的北极出来,回到磁体的南极,形成一条条闭合的曲线。
⑤磁体周围磁感线的分布是立体的,而不是平面的。
我们画图时,因受纸面的限制,只画了一个平面内的磁感线的分布情况。
⑥磁体周围的任何两条磁感线都不会相交,因为磁场中任何一点的磁场方向只有一个确定的方向。
如果某一点有两条磁感线相交,则该点就有两个磁场方向,这是不可能的。
5、几种常见的磁感线分布123、偏角。
4、,1注意:①试验中,导线应放在小磁针上方并且两者平行,若两者垂直,通电时小磁针不会偏转。
②采用“触接”的方式给导线通电。
③用电源短路的形式可以在导线中获得较大的电流,使通电导线周围的磁场更强些,小磁针偏转更明显,但要注意闭合电路的时间一定要短,否则会烧坏电源。
④通电导线周围的磁场是一种看不见、摸不着的物质,把小磁针放在通电导线附近,通过小磁针的偏转来反映磁场的存在,这种方法在物理学中了叫做转换法。
2、电流的磁效应:通电导线周围存在与电流方向有关的磁场,这种现象叫做电流的磁效应。
3、通电螺线管的周围存在着磁场,其外部的磁场与条形磁体的磁场相似,通电螺线管的两端与条形磁体一样有两个磁极。
在通电螺线管外部,磁感线从通电螺线管的N极出来回到S极;在通电螺线管的内部,磁感线从S极到N极,若改变电路方向,通电螺线管的N极和S极对调。
三、安培定则1、安培定则S ①现在螺线管上标明导线中的电流方向。
②用右手握住螺线管,让四指指向螺线管中电流的方向。
③拇指所指的那端为N 极。
(2)已知磁极位置来确定电流的方向, ①先用右手握住螺线管,拇指指向N 极。
②四指的指向就是电流的方向。
③按照四指所指的方向在螺线管上标出电流方向(3)已知电流方向和磁极来确定通电螺线管的绕线第3节电磁铁电磁继电器一、电磁铁1、构造:内部插有铁芯的通电螺线管叫做电磁铁。
铁芯被磁化后的磁场与螺线管的磁场叠加,是电磁铁的磁性增强。
2、特点:当有电流通过时,它会有较强的磁性,没有电流时就失去磁性。
341(1(2法。
电磁铁。
是电流表的示数增大,观察电磁铁吸引铁钉的数目有什么变化。
甲乙④将两个线圈匝数不同的电磁铁串联在电路中,如图乙,观察两个电磁铁吸引铁钉的数目有什么不同。
⑤整理好实验器材。
⑥归纳分析:甲图所示实验中,通过电磁铁的电流越大,吸引的铁钉的数目越多,说明电磁铁的磁性越强;乙图所示实验中,线圈匝数多的B电磁铁吸引铁钉的数目多,说明B电磁铁的磁性比A电磁铁的磁性强。
实验结论:匝数一定时,通入的电流越大,电磁铁的磁性越强;电流一定时,匝数越多,电磁铁的磁性越强。
注意:实验探究影响电磁铁磁性强弱的因素时,应用了转换法和控制变量法。
2、电磁铁的优点(1)可以通过电流的通断来控制其磁性的有无。
(2)可以通过改变电流的方向来改变其磁性的极性。
(3)可以通过改变电流的大小或匝数的多少来控制其磁性的强弱。
注意:电磁铁的铁芯用软铁而不能用钢:电磁铁要求其磁性随着通入电流的大小而发生显着变化,而且还通过电流的通断来控制磁性的有无。
软铁容易被磁化,磁性也很容易消失,而钢被磁“U”3(1(2供的,磁铁,1、衔铁(B)制用23吸下,使动触点和静触点接触,高压工作电路闭合,有较大的电流通过电动机,电动机工作;断开低压控制电路的开关,电磁铁失去磁性,弹簧把衔铁拉起来,动触点和静触点分开,切断工作电路。
4、电磁继电器的工作过程:来实现;而高压工作电路又有电铃报警、彩色灯显示、电动机工作等几种情形。
5、电磁继电器的应用:①利用电磁继电器可以通过控制低电压、弱电流电路的通断来间接的控制高电压、强电流工作电路的通断,使人们远离高压的危险。
②利用电磁继电器可以使人远离高温、有毒等环境,实现远距离控制。
③在电磁继电器控制电路中接入对温度、压力或光照敏感的元件,利用这些元件操纵控制电路的通断,可以实现对温度、压力或光的自动控制。
如电铃、防盗报警、防汛报警、温度自动控制、空气开关自动控制、漏电保护器等。
第4节电动机1关。
23根直导线实验现象:直导线ab向右运动。
实验分析:改变磁感线方向,ab运动方向也改变,说明ab受力方向与磁感线方向有关。
实验④:同时改变ab的电流方向和对调磁体的两个磁极,观察实验现象。
实验现象:直导线ab向左运动。
实验分析:同时改变电流方向和磁感线方向时直导线向左运动,说明当电流方向与磁感线方向同时反向时,ab受力方向不变。
知识拓展:(1)磁场为什么会对电流产生力的作用。
我们知道磁体周围有磁场,电流周围也存在着磁场,我们可以把通电导线看成一个磁体,当通电导线靠近磁体时,他们之间的作用通过磁场而发声。
因此,磁场对电流的作用,其实质也是磁体和磁体之间通过磁场而发生的作用。
(2)通电导线在磁场中的受力情况与磁感线的方向、电流的方向以及它们之间的相对位置有关。
当电流方向与磁感线方向平行时,通电导线不受力;当通电导线与磁感线方向垂直时,受力最大。
(3)通电导线在磁场中受力运动时,消耗了电能,得到了机械能。
注意:(1ab(2磁场度,尽更明(35转过1转子在定2探究实验:如图所示,把一个线圈放在磁场里,接通电源,让电流通过线圈,观察发生的现象。
探究发现:接通电源,会看到线圈开始转动,但是不能连续转动,在图乙所示位置左右摆几下,最后停在图乙所示位置。
到磁场的作用力方向相反。
ab受到向上的力,cd边收到向下的力,这两个力不在同一直线上,于是就使线圈开始运动。
当转到图乙所示位置时,线圈受到的两个力在同一直线上,大小相等,方向相反,彼此平衡,这一位置称为线圈的平衡位置。
但由于惯性线圈会越过平衡位置转到图丙所示位置,此时,ab 边受到向上的力,cd 边收到向下的力,两个力大小相等、方向相反,不能使线圈继续顺时针转动,反而要使线圈反向转动,使其在回到图乙所示位置。
原因剖析:线圈不能连续转动,是因为线圈越过了平衡位置以后,受到的力要阻碍它的转动。
要使线圈连续转动起来,必须使线圈越过平衡位置时,即使改变线圈中两边的受力方向。
解决方案:①线圈越过平衡位置后停止对线圈供电,让线圈靠惯性转过后半周,这样线圈的转动不平稳,动力弱。
②在线圈转动的后半期,设法改变电流的方向,使线圈在后半周也获得同方向转动的动力,线圈会平稳、有力的转动下去,实际的电动机是通过换向器来实现这一目的的。
3、换向器组成,两他电(5)直流电动机的转向与转速的调节:若要改变直流电动机的转向,只要改变电流的方向或磁感线的方向即可。
若要改变直流电动机的转速,只要改变电流的大小或磁场的强弱即可。
知识拓展:(1)构造:实际的电动机为了转动平稳,转子有许多组线圈组成,并均匀的镶嵌在圆柱铁芯上;定子由机壳和磁体(或用电磁铁产生更强的磁场)组成,两个电刷用石墨和铜粉压制而成。
(2)电动机的优点:①电动机构造简单,控制方便,体积小,效率高,功率可大可小。
②对环境造成的污染小。
(3)电动机的应用:在家庭中,电动机被广泛应用在电风扇、洗衣机等用电器中;在工农业(1(2(3圈中过相流是1电流偏转。
②让导线在磁场中沿竖直方向上下运动(与磁感线平行),电流表指针不动,说明无电流产生。
③让导线在磁场中沿水平方向里外运动(与ab方向平行),电流表指针不动,说明无电流产生。
④让导线在磁场中沿水平方向左右运动(切割磁感线),电流表指针偏转,说明有电流产生。
⑤断开导线a端与电流表相连的导线,重复步骤④中操作,电流表指针不动,说明无电流产生。
探究归纳:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流。
这种由于导体在磁场中运动而产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
知识拓展:电磁感应现象是英国物理学家法拉第在1831年最先发现的,法拉第由电能生磁想到磁能否生电,这属于逆向思维法,逆向思维是发明创造的重要方法之一。
2、产生感应电流的条件:①导线是闭合回路的一部分;②导体在磁场中做切割磁感线运动。
注意:(1)产生感应电流的两个条件缺一不可。
如果电路不闭合,导体做切割磁感线运动时,能产生感应电压,不会产生感应电流。
(2)所谓切割磁感线,类似于切菜,垂直切割或斜着切割都可以。
这就是说,闭合电路的一部分导体的运动方向一定与磁感线成一定的角度,而不是与磁感线平行,否则无法切割磁感线。
感应探究归纳:在电磁感应中,感应电流的方向跟导体在磁场中做切割磁感线运动的的方向和磁场的方向有关。
只改变磁场的方向或导体做切割磁感线运动的方向,感应电流的方向改变;若同时将磁场的方向和导体做切割磁感线运动的方向反向,则感应电流的方向不变。
知识拓展:影响感应电流大小的因素:①导体做切割磁感线运动的速度越大,感应电流越大;②磁场越强,感应电流越大;③线圈匝数越多,感应电流越大。
注意:(1)切割磁感线的导线,要尽量选用电阻较小的,以便使感应电流较大,实验现象明显。
(2)由于一根导线产生的感应电流较小,电流表的指针片转不明显,故可以用导线制成矩形的多匝线圈代替单根导线,且切割时运动要迅速,这样产生的感应电流会大些。
(3)在探究感应电流的方向与哪些因素有关时,要正确运用控制变量法。
4、电磁感应和磁场对电流的作用的区别知识拓展:周期和频率是用来表示交变电流特点的两个物理量,周期是指交流发电机中线圈转动一周所用的时间,单位是“秒”;频率是指每秒内线圈转动的周数,他的单位是“赫兹”。