地下水动力学第七章
α ↑⇒ e
−α (t −τ )
=
1
↓
∴ sµd [1− e−α (t −τ ) ] ↑ δ
α
1
α
1
↑⇒ 给水量↓⇒ 滞后性大
α
为滞后系数
地下水动力学课程组
t >τ 1、博尔顿假定 ——三点说明(续)
(3)在 (3)在τ与t区间内滞后给水的总水量. 区间内滞后给水的总水量.
eα (t −τ ) α愈大,则τ至时段内给出水量大,滞后性小 t 1 ∴ ↓⇒ 给水量↑⇒ 滞后性小
地下水动力学课程组
一、潜水含水层在抽水条件下的给水机理
沃尔顿(W.C.Walton) 2. 沃尔顿(W.C.Walton)抽水过程三阶段 抽水早期:弹性储量释放阶段,可能仅几分钟, (1)抽水早期:弹性储量释放阶段,可能仅几分钟, 遵循承压井泰斯曲线 µ = µ e (2)疏干排水阶段 表现偏离泰斯曲线。 曲线斜率减少, 表现偏离泰斯曲线。s-t曲线斜率减少,甚至短时间 稳定。 稳定。 (3)平衡阶段 抽水持续进行。 抽水持续进行。当疏干排水的滞后排水作用达到压力 平衡时又与泰斯曲线相吻合, 平衡时又与泰斯曲线相吻合,此时 µ = µ 。
Q r s= WD (ud , ) 4πT B
由 ud 和 r 计算博尔顿井函数表,如表7-2-1, p171 B 以 1 为横作标, D 为纵轴,绘制D类标准曲线。 W
ud
对于比较小时,− 2 −13可写为 t 7 Q r s= WE (u e , ) ⇒ E类标准曲线 4πT B
由 ue 以
1 ue
α ↑⇒ e−α (t −τ ) =
1
↓
∴ sµd [1− e−α (t −τ ) ] ↑ δ
α
1
α
1
↑⇒ 给水量↓⇒ 滞后性大
这种刻画滞后 性的数学方法 可用于表征降 雨入渗补给、 泉流量衰减等
α
为滞后系数
地下水动力学课程组
2.考虑滞后疏干的潜水流动控制方程 2.考虑滞后疏干的潜水流动控制方程
(1)忽略垂向分流速,且令 T = khm = const
B B
和对应的 s, t,W 和 1 值。 E ue
r QWE (u e , ) B ∴T = 4π s
4Tt ⋅ u e µ e= r2地下水动力学课程组
(一)标准曲线的使用方法
(3)将实测曲线重选在D类曲线上,这里除了应保持相应 r
B
坐标轴彼此平行外,也应与E类标准曲线匹配时相同。找 到最优拟合位置后,任选一配合点,记下相应的
3.滞后给水的博尔顿解
Q ∞2 r αηt(1− x2 ) −λ1 s= ∫0 x[1− e (chλ2 + 2λ2 shλ2 )]J0 (ν B x)dx 4πT x +1 当t足够小,η →∞时,
−αηt+( x2+1) Q ∞ r x2 dx s= ] ∫0 2J0 ( B x) x2 +1[1− e 4πT x 当α → 0 B →∞. ,
δsi αµd e−α (t −τ )δτi ∑δτ i =1 i
i
地下水动力学课程组
2、考虑滞后疏干的潜水流动控制方程
滞后疏干排水
地下水动力学课程组
2、考虑滞后疏干的潜水流动控制方程 n δsi −α (t −τ i ) ∑ αµd e δτi
i =1
δτi
n →∞ 当 δτi → 0
∂s ∴有 αµd e−α (t −τ )dτ ∫0 ∂t
第七章 无越流潜水含水层中的完整井流 一、概述
无压井流与承压井流不同 潜水面是随时间变化的浸润漏斗,控制方程是非 的浸润漏斗, 潜水面是 的浸润漏斗 线性的,并不能真正用 简化表示。 线性的,并不能真正用hm简化表示。 无压井流的导水系数 T=Kh,此参数随距离 r,t是 , 是 变化的 而承压井流 无关。 变化的。而承压井流T=KM,与r,t无关。 , 无关 无压井流存在垂直分流速,即它是三维流动的, 无压井流存在垂直分流速,即它是三维流动的, 垂直分流速 而承压井流是径向二维流的。 而承压井流是径向二维流的。
. 在 δτi时段内水位下降 δsi (i = 1 2Ln)。降深 δ si 所引起 , 的在t时刻的疏干排水量,即单位时间水平面积的多孔介质 柱体中,单位时间的滞后重力给水量可写为:
δsiαµd e
−α (t −τ i )
δsi = αµd e−α (t −τ )δτi δτi
i
在t时刻之前各阶段 (δτ1,δτ2 ,δτ3 Lδτn ) 产生的降深 (δs1,δs2 ,δs3 L sn ) 对t时刻引起的滞后重力给水的 δ 总水量: n
V = µdδ s ×α × e−α (t −τ ) ×1 = µdδ s ×α × e−α (t −τ )
µd是重力给水度;α是经验系数
地下水动力学课程组
1、博尔顿假定 ——三点说明 τ
(t > τ )
µdδ s ×α × e
−α (t −τ )
它为滞后重力给水。
(1)是 τ 和 τ+d τ 之间发生降深 δ s 之后t(t> τ)时刻 释放的。 (2)滞后给水满足水量均衡:
地下水动力学课程组
考虑滞后给水的分析方法–博尔顿法 7.2 考虑滞后给水的分析方法 博尔顿法
一、潜水含水层在抽水条件下的给水机理
1、潜水含水层重力滞后疏干排水
•承压含水层 :水头的下降是压力的减小,地下水的释放是 承压含水层 弹性储存量的释放 而含水层的厚度不变。 •无压含水层 无压含水层:水头下降导致水层厚度的下降 水位下降是由 无压含水层 于重力储存量的释放。 •重力疏干 重力疏干:重力给水是地下水在重力作用下缓慢排出的,称 重力疏干 为重力疏干。 •滞后疏干 滞后疏干:由于这种疏干排水的速率与含水介质有关,当含 滞后疏干 水层颗粒很细时,重力水的释放不能瞬时完成,因而存在滞后 现象,即为滞后疏干(或滞后重力排水)。
地下水动力学课程组
4、博尔顿潜水井流标准曲线
每一条E类曲线的右边和D类曲线的左边部分接近一水平线。
r r r WE (ue , ) = WD (ud , ) = 2K0 ( ) B B B
K0 为虚宗量零阶第二类贝塞尔函数。
注意:上述标准曲线在 实际上:当
η →∞
可运用。
前提推出的。
η ≥ 100
∂2s 1 ∂s ∂s ) = µe T( 2 + ∂r r ∂r ∂t
(2)考虑滞后疏干排水, 将[0-t]分成n个时段
只 虑 性 水 考 弹 释
∴δτi = τi −τi−1
=
τ0 =
地下水动力学课程组
2、考虑滞后疏干的潜水流动控制方程
--滞后疏干排水的数学刻画 滞后疏干排水的数学刻画 (2)考虑滞后疏干排水,将[0-t]分成n个时段
(3)在 (3)在τ与t区间内滞后给水的总水量
∴∫ δ sαµd e
τ
t −α (t −τ )
dt = −δ sµd ∫ e−α (t −τ )d[−α(t −τ )]
τ
t
= −δ sµd [e−α (t −τ ) ]τ = δ sµd [1− e−α (t −τ ) ] t
eα (t −τ ) α愈大,则τ至时段内给出水量大,滞后性小 t 1 ∴ ↓⇒ 给水量↑⇒ 滞后性小
r W = f (αt,η, ) B 当 →∞ η Q s= 4πT
∫
∞
0
r 1 2J0 ( x)[1− 2 e B x +1
−
αtx2
x2 +1
dx −∈ ] x
x2 −αηt +( x2 +1) e 式中∈= 2 x +1 当t足够小,η →∞时,
−αηt+( x2+1) Q ∞ r x2 dx s= ] ∫0 2J0 ( B x) x2 +1[1− e 4πT x 当α → 0,B →∞. 地下水动力学课程组
r 2µe Q Q ∴s = W( )= W(ue ) 4πT 4Tt 4πT 当t足够大时, r 2µd Q Q s= W( )= W(ud ) 4πT 4Tt 4πT
地下水动力学课程组
3.滞后给水的博尔顿解
当α → 0 B →∞. , r2µe Q Q ∴s = W( )= W(ue ) 4πT 4Tt 4πT 当t足够大时, r2µd Q Q s= W( )= W(ud ) 4πT 4Tt 4πT
r 2µe ue = 由 4Tt r 2µd ud = = ue (η −1) 4Tt
由于B =
2
T
αµd
⇒α B2 =
2
T
Q r s= WD (ud , ) 4πT B
µd
r ( )2 r 1 r 1 ∴ud = ⋅ = ⋅ = B 4t T 4t α B2 4αt
地下水动力学课程组
4、博尔顿潜水井流标准曲线
地下水动力学课程组
一、概述
无压井流与承压井流不同 泰斯系统地下水释放是弹性释水,它近似是瞬 时完成的。 无压井流地下水是重力水疏干,是重力给水, 往往无法瞬时完成,存在滞后排水情况。 无压井流在井壁上出现水跃(出渗段)现象
地下水动力学课程组
二、说 明
以前无压井流只是简单地从形式上利用泰斯公 式解,是简单的近似处理。 前面的无压井流是在忽略以上几个特点的情况 下导出的。 到目前为止,无压水流的问题在理论上尚未获 得严格解法。目前只是考虑到上述五个问题中 的某个问题得到的。
t
t ∂ ∂2s 1 ∂s ∂s s −α (t −τ ) T( 2 + ) = µe +αµd ∫ e dτ 0 ∂ ∂r r ∂r ∂t t s(r,0) = 0 s(∞, t) = 0
∂s = −Q lim2π rT r →0 ∂r