当前位置:文档之家› 气动特性分析

气动特性分析


抖振边界
• 抖振现象
– 对于高亚声速(跨声速)飞机,当升力系数和飞行马赫数达到一 定值时,会发生明显的气流分离现象,导致机体和操纵面抖振。
• 抖振边界
– 将升力系数和M数分为二个区域:抖振区和无抖振区。
导致抖振的条件
• 当升力系数接近飞机最大升力系数CLmax ,机翼上表面 的气流发生分离。
• 当飞行速度超过阻力发散马赫数MDD,此时机翼上的 激波会引起不稳定的气流,导致气流分离。
0.01916
CL= 0.625 CDTOT= 0.03436
升致阻力
• 定义 – 伴随升力产生而引起的阻力。
• 巡航构型的升致阻力因子
Kclean
ddC CD L2clean
1.050.007
AR
• 襟翼打开时的升致阻力因子
K d d C C D L 2 1 .0 5 A 0 R .2 7 10 .0 0 0 4 8 7fla p0 .0 0 7
低速构形的附加形阻
• 增升装置的阻力取决于增升装置的类型。 • 影响襟翼阻力增量的参数还有襟翼偏角、机翼面积延伸比例和后掠角等。 • 机翼面积的延伸比例为襟翼打开时机翼总面积(含前、后缘襟翼增加的
面积)与原机翼参考面积的比例。 • 根据襟翼打开时机翼弦长的延伸比例及襟翼的展向站位可以估算出机翼
面积延伸比例。
• 后缘襟翼产生的升力增量
C L m a x C lm a xS fla p p e d /S w c o s H L
– ΔClmax为增升装置二维剖面的最大升力增量; – Sflapped为流经增升装置的流场所覆盖的机翼面积; – ΛHL为增升装置铰链线的后掠角,在没有详细数据时,对于后缘 (前缘)襟翼可以近似使用后缘(前缘)后掠角。
欧拉方程数值方法
N-S方程数值方法
在飞机设计中的应用
概念设计
总体初步设计和气动分析, 机翼弯扭设计 中等强度激波的 跨音速流
阻力计算,附面层修正, 修正无粘计算结果
包括脱体涡的亚、跨、超 声速流场分析
包括分离流的复杂流场
内容
气动特性
• 升力
– 升力线斜率 – 设计升力系数 – 最大升力系数 – 抖振升力系数
K 为机身长细比,即机身长度与机身最大直径之比 。
-发动机短舱的压差阻力因子:
Fnac
10.35/
lnac dnac
lnac/dnac发动机短舱的长度与直径之比。
压差阻力
– 翼面类部件的压差阻力因子与其平均相对厚度及最大厚度位 置的弦向比例有关,还需要考虑飞行马赫数的修正.
– 机翼的压差阻力因子(尾翼类似):
15°
20°
着陆状态
35°
45°
阻力
升致阻力
摩擦阻力
阻 力
零升阻力
压差阻力 干扰阻力
次项阻力
配平阻力 跨声速压缩性阻力和超声速波阻 以下气动估算公式主要适用于运输机
典型运输机的阻力组成
巡航马赫数0.78;展弦比9.76;后掠角25度;巡航升阻比18.2
= 0.00069 0.00186
0.01265
当CL增加到一定值后,有气流分离。
当速度超过MDD后,有气流分离。
预测抖振边界
• 与CLmax关联的抖振边界
– 计算各飞行马赫数下的最大升力系数CLmax 。 – 取各飞行M数下CLmax的90%作为抖振升力系数。
• 与MDD关联的抖振边界
– 一般地,飞行马赫数比MDD高0.03时,会出现抖振现象。 – MDD与升力系数CL有关,当CL越大时,MDD越小。 – 根据CL和MDD 的关系,可确定出抖振边界。
增升装置对升力的影响
增升装置二维剖面最大升力增量的估算
c’LE /c为后缘 缝翼打开后机 翼的弦长与原 弦长的比例
c’TE /c为后缘 缝翼打开后机 翼的弦长与原 弦长的比例
增升装置对升力的影响
• 克鲁格襟翼使用时,不会引起机翼弦长的增加; • 前缘缝襟翼打开时,会使机翼弦长增加。
– c’LE /c为前缘缝翼打开后机翼的弦长与原弦长的比例, 它与机翼外露段的相对展长有一定对应关系。
气动特性分析
概念设计流程
设计
全机布局设计
起分 落系 架统
机身外形初步设计 确定主要参数 发动机选择
机翼外形初步设计 尾翼外形初步设计
总体布置 形成初步方案
设计要求、适航条例
No
优化
满足要求? 方案最优?
Yes 初 步 方 案
方案分析与评估
重量特性 气动特性 动力特性 性能评估 操稳特性 经济性分析 噪声特性 排放量 可靠性 维修性 机场适应性 ……
现超声速的过程,提高阻力发散马赫数MDD。
压缩性阻力
• 阻力发散马赫数MDD计算公式:
M D Dcos 1Q chd M R E F1 1 0 cos2 C LQ chd 3/2co ts/ cQ c m hd
MREF为翼形设计的技术水平因子,通常取值在0.85~0.935之间。
增升装置对升力的影响
• 后缘襟翼中,简单襟翼不会引起弦长的增加; • 富勒式襟翼和带有补偿式铰链轴的襟翼会引起弦长的增
加,其增量与襟翼打开时的偏转角度有一定对应关系。
增升装置对升力的影响
• 襟翼实际使用时,升力增量的估算值与襟翼偏转角有 关,可近似表示为下式(二维):
Cl max Clmax
部件的湿润面积的计算
• 对于机翼和尾翼:
– 如果 (t/c) < 0.05; Swet = 2.0003·S外露 – 如果 (t/c) 0.05; Swet = S外露·[1.977 + 0.52(t/c)]
• 对于机身、短舱和外挂:
– Swet = K·( A俯 + A侧)/2 其中:K = π (对于椭圆截面); K = 4 (对于方形截面) A俯 -俯视图面积 A侧-俯视图面积
分析
输入 设计方案
任务
分析评估
计算模型 • 工程估算 • CFD
输出
巡航(高速) • 升阻特性
起飞/着陆(低速) • 最大升力系数 • 升阻特性
抖振升力系数
气动特性分析评估的方法理论
粘流理论 无粘有旋流理论 粘性有旋流理论
计算方法
简化解析公式 半经验公式 升力面理论 涡格法/面元法 小扰动位流方程或 全位流方程的数值方法 附面层方程解 无粘/有粘交互计算
βflap-襟翼偏转角度
摩擦阻力
• 定义
– 由于空气的粘性,空气微团与飞机表面发生摩擦而产生的。
• 方法
– 基于附面层理论,应用等效长度法确定飞机的摩擦阻力。
• 摩擦阻力系数
湍流状态的摩擦阻力系数计算公式为:
cfturb
logNR
A b 1cM2
d
摩擦阻力
湍流与层流混合情况下的摩擦阻力系数为:
• 起飞/着陆构形
总阻力 = 零升阻力 + 升致阻力 + 配平阻力 + 起落架放下 引起的阻力增量 + 襟翼放下引起的阻力增量
C D C D 0 C D i C D L G C D 0 f l a p C D ,t r i m
总阻力计算
• 第二阶段爬升构型(单发失效)
总阻力 = 零升阻力 + 升致阻力 + 配平阻力 + 襟翼放(起飞位置)下引起的阻力增量 + 单发失效引起的阻力增量
• 不同襟翼偏转角下的升力系数增量可以表示为(三维):
C L fla p C lm a xS fla p p e d/S wc o s H L
m a x
增升装置对升力的影响
典型的飞行状态采用的襟翼偏角βflap
飞行状态 | 襟翼类型
单缝襟翼
双缝/富勒式襟翼
一般起飞状态

10°
最大重量起飞
根据上述二个条件,即可画出抖振边界。
不同M时最大升力系数之比
抖振边界裕度
某典型喷气客机的抖振边界图
– 估算公式:
CD
0.3 A f SW
Af - 风扇横截面积 SW - 机翼参考面积
• 为配平飞机的飞行状态而增加的额外阻力。
– 近似估算:零升阻力的5%。
总阻力计算
• 巡航构形
总阻力 = 零升阻力 + 升致阻力 + 压缩性阻力 + 配平阻力
C D C D 0 C D i C D c o m p C D ,tr im
• 现代运输机配平阻力一般占总阻力的2%或更少。
压缩性阻力
• 飞机在跨声速区飞行时,当飞机的飞行速度超过临界马赫 数Mcr时,机翼上出现局部超过声速的气流,会产生跨声 速压缩性阻力,使阻力增大。
压缩性阻力
• 影响压缩性阻力的因素
– 飞行时的升力系数 – 马赫数 – 机翼设计的技术水平。设计水平高的机翼,会延缓机翼气流出
F w in g 1 x 0 /.c 6 m t/c 1 0 0 t/c 4 1 .3 4 M 0 .1 8c o s m 0 .2 8
(t/c) 为翼型的相对厚度; (x/c)m为翼型最大厚度处的相对位置; Λm为最大厚度位置连线的后掠角; M 为飞行马赫数。
干扰阻力
• 干扰阻力是通过干扰因子Q来计入的。 • 机身与机翼
– 对于翼身融合良好的中单翼、下单翼布局,Q=1.0; – 没有整流的机翼,Q=1.1 ~ 1.4, – 常规设计中,Q的取值范围一般在1.0 ~ 1.2之间;
• 平尾和垂尾
– Q=1.2;
• 发动机短舱
– 翼吊布局:Q可以取1.05 – 尾吊布局:干扰阻力应再取高出20%,即1.26。
各部件的零升阻力系数
• 跨声速压缩性阻力的计算公式:
CDcompCDD1M M MDDn
低速构形的附加形阻
低速状态下,起落架放下引起的阻力增量:
相关主题