SN1 SN2怎么区别呢?
看反应产物有没有构型翻转情况,如果产物构型全部翻转(即产物单一)则是SN1反应,反之若即有构型翻转产物又有不翻转的产物(即产物不唯一)则是SN2反应
影响SN1的条件只有底物的性质与浓度,底物C+离子稳定性越大越趋向于SN1,比如三级C+离子苄基C+ 稀丙基C+ 因为生成C+离子,所以要求溶剂是极性
而影响SN2的条件不光是和底物的性质有关,还与溶剂,亲核试剂的性质有关,SN2影响反应的方面是空间位阻,所以底物是一级C容易进行苄基与稀丙基也容易进行,忘记原因了,亲核试剂一般碱性强的,亲核试剂比较小的容易进行,
伯卤代烃以SN2为主,叔卤代烃则以SN1为主。
还有便是要根据反应的产物判断!一般说来,直链的一级卤代烷,SN2反应很容易进行(因而消除反应少,除有强碱时),二级卤代碗及在beta碳上有侧链的一级卤代烷,SN2反应速率较慢,低极性溶剂强亲核试剂有利于SN2反应发生,三级卤代烷SN2反应很慢!
SN1反应的特征是分步进行的单分子反应,并有活泼中间体碳正离子的生成,在反应过程中,其决定反应速度的一步发生共价健变化的有两种分子,或者说有两种分子参与了过渡态的形成,因此,这类反应历程称为双分子亲核取代反应历程是SN2
如何判断一个反应是SN1还是SN2??
SN1为单分子亲核取代反应;SN2为双分子亲核取代反应。
SN1的过程分为两步:第一步,反应物发生键裂(电离),生成活性中间体正碳离子和离去基团;第二步,正碳离子迅速与试剂结合成为产物。
总的反应速率只与反应物浓度成正比,而与试剂浓度无关。
S N2为旧键断裂和新键形成同时发生的协同过程。
反应速率与反应物浓度和试剂浓度都成正比。
能生成相对稳定的正碳离子和离去基团的反应物容易发生SN1,中心碳原子空间阻碍小的反应物容易发生
SN2 。
什么样的物质发生脱羧反应
脂肪酸
这个反应对一般的脂肪酸,特别是长链的脂肪酸,由于反应温度太高,产率低,加之不易分离,所以一般不用来制备烷烃。
但是若脂肪酸的α-碳原子上带有吸电子基团如硝基、卤素、羰基、氰基等时,则使得脱羧容易而且产率也高,但是它们的反应历程不完全一样。
例如三氯乙酸的钠盐在水中50℃就可脱羧生成氯仿。
三氯乙酸盐
三氯乙酸的钠盐在水中完全离解成负离子,由于三个氯原子具有强的吸电子作用,就使得碳碳之间的电子云偏向于有氯取代的碳一边,这样形成的负碳离子就更加稳定,然后和质子结合形成氯仿,而羧基负离子上的电子转移到碳氧之间而形成二氧化碳。
此反应是通过负离子进行的脱羧反应。
β-酮酸
β-酮酸很易脱羧,其反应过程与上述不同,而是通过一个六元环进行的协同反应,首先生成烯醇,然后经重排得到酮。
由于反应的过渡态是一个六元环,能量低,因而反应很易进行。
此反应在合成上很重要,丙二酸型化合物以及α,β-不饱和酸等的脱羧,一般都属于这一类型的反应。
芳香酸的脱羧比脂肪酸容易进行,如苯甲酸在喹啉溶液中加少许铜粉作为催化剂,加热即可脱羧。
特别是2,4,6-三硝基苯甲酸最容易脱羧,这是由于有三个强吸电子的硝基的作用,使得羧基与苯环间的碳碳键更容易断裂。
其它
当羧酸的α-C上连有强吸电子基时,加热可使它较顺利地脱羧。
如:临二芳香有机酸加强热的时候,也很容易脱去一个羧基,但温度低了会形成酸酐。
不同的多元羧酸加热的时候,根据活性的不同,有的脱羧,有的脱水,有的又脱羧又脱水,庚二酸以上的脱水,以下的一般脱羧。
Tollens试剂是什么:就是银氨溶液,用来鉴别醛
1.强烈的亲核性质
Grignard试剂可与物质中的活泼氢(如水、乙醇的羟基氢、乙炔的末端氢)反应,生成相应的烃基。
如:
X-Mg-CH2CH3 + H2O → CH3CH3
X-Mg-CH2CH3 + CH3CH2OH → CH3CH3
X-Mg-CH2CH3 + HC≡CH → CH3CH3
2. 与CO2或O2的反应
格氏试剂可以与二氧化碳或氧气发生亲核加成反应生成增加一个碳的羧酸或同碳数的过氧化合物。
格氏试剂与二氧化碳的加成反应在有机合成中也有着重要的意义,不仅通过生成新的 C-C 键实现了碳链的增长,而且恰到好处地实现了增加一个碳原子并引入羧基官能团,是制备增加一个碳原子的羧酸的最常用方法之一。
3. 活泼卤代烃格氏试剂与活泼卤代烃之间的偶联反应
此反应实现的是由活泼的卤代烃制备的格氏试剂同活泼卤代烃基之间的偶连,比如由苄基卤、烯丙基卤或三级卤代烷制备的格氏试剂。
此反应在某种程度上说可以看作是对Wurtz反应和Wurtz-Fittig反应以及乌尔曼反应的互补,因为这几个反应只能实现不活泼的烃基的偶连,而由格氏试剂实现的偶连反应不仅引入了活泼基团,而且由于它的特殊结构还可以实现不同的烃基之间的偶连。
由卤代烃的烃基通过偶连反应制备各种烃类,这些反应类型对于合成中碳链的增长有着非常重要的意义,要灵活掌握。
4、与醛酮加成成醇
这也许是格氏试剂在合成上最重要的性质之一。
此类反应是格氏试剂的显负价的碳原子显示了良好的亲核性,对缺电子的醛酮的羰基碳原子进行亲核加成,而显正电的镁离子加成到羰基氧原子上,生成—C—C—O—Mg—X的结构,再经过酸催化下的水解去掉镁的部分,生成醇的结构和镁的卤化物和氢氧化物。
此类反应可以用来合成各种醇类,也是有机合成中合成醇类的最常用的方法。
在做复杂的醇类的反合成分析时,要清楚地意识到醇羟基的α碳原子就是原来醛酮分子中的羰基碳,醇羟基的一个β碳原子可能就是原来格氏试剂中显负价的官能碳,而α碳原子和这个β碳原子之间的单键就是通过这个亲核加成反应新形成的。
通常格氏试剂与醛类发生亲核加成反应生成二级醇;格氏试剂与酮类发生亲核加成反应生成三级醇;只有格氏试剂与甲醛发生亲核加成反应才会生成一级醇,而且这也是制备增加一个碳的醇的常用方法。
另外,格氏试剂与环氧乙烷加成,可得到增加2个碳原子的一级醇。
两类定位基
根据许多实验结果,可以把苯环上的取代基,按进行亲电取代时的定位效应,大致分为两类。
第一类定位基——邻对位定位基:使新进入的取代基主要进入它的邻位和对位(邻位和对位异构体之和大于60%);同时一般使苯环活化(卤素等例外)。
例如—O-,—N(CH3)2,—NH2,—
OH,OCH3,—NHCOCH3,—OCOCH3,—R,—X(Cl,Br,I),—C6H5等。
第二类定位基——间位定位基:使新进入的取代基主要进入它的间位(间位异构体大于40%);同时使苯环钝化。
例如—N(CH3)3,—NO2,—CN,—SO3H,—CHO,—COCH3,—COOH,—COOCH3,—
CONH2,—NH3等。
上述两类定位基定位能力的强弱是不同的,其强弱次序大致如上述次序。
烷氧基碳正离子>叔碳正离子>苄基及烯丙基碳正离子>仲碳正离子。
一般认为,烯丙基和苄基碳正离子的稳定性小于叔碳正离子,而取代的烯丙基和苄基碳正离子大于叔碳正离子的稳定性。
影响SN2反应机制和SN1反应机制的条件
四、影响SN2反应机制和SN1反应机制的条件卤代烃烃基的结构对取代反应
的速率有明显的影响。
一般来说,影响反应速率的因素有两个,电子效应和空间效应。
在卤代烷的SN2反应中,溴甲烷的反应速率最快,当甲基上的氢(α位上的氢)逐步被烃基取代,反应速率明显下降,显然空间效应在起主要作用。
如果离去基团所连的碳原子背后的空间位阻很大,进入基团与碳原子碰撞的机会很少,或者根本不能接触,那反应就进行得很慢或根本不能进行。
例如,下图是α位上的氢被甲基取代的溴甲烷按SN2 机制进行水解反应的相对速率:
总之,影响 SN2 反应速率的主要因素是空间效应,空间位阻越大,反应速率越低。
三级卤代烷,由于离去基团的碳原子背面空间位阻较大,一般不发生SN2反应,而容易按SN1反应机制进行,而一级卤代烷不容易发生以碳正离子为中间体的SN1反应,这是因为不同级别的碳正离子中间体稳定性之间的差异。
三级碳正离子最稳定,超共轭效应和诱导效应最大,所以最容易生成。
二级碳正离子次之,一级碳正离子稳定性最差,这是电子效应使三级卤代烷容易离解为三级碳正离子而按SN1反应机制进行。
三级卤代烷容易离解为三级碳正离子的另一个原因是空间效应,因为三级卤代烷上有三个烷基,比较拥挤,彼此互相排斥,而如果形成碳正离子,是一个三角形的平面结构,三个取代基成近似120°,互相距离最远,所以也有助于离解。
总之,影响SN1反应速率的主要因素是离解后生成的碳正离子中间体的稳定性。
※卤代烃亲核取代反应机制取向的总结:
★一级卤代烷容易按SN2机制进行反应;
★三级卤代烷容易按SN1机制进行反应;
★二级卤代烷均可以按此两种机制进行反应,这决定于反应条件,不过以SN2机制较为常见;
★烯丙基卤代烷和苄基卤代烷由于其烃基很好的共轭作用,使得其离解后生成的碳正离子非常稳定,而且它分子内的位阻作用也不大,所以按SN1机制和SN2 机制进行反应都非常容易;
★某些卤代烷由于分子内部空阻较大,解离生成碳正离子中间体也不够稳定,所以按两种机制均不容易发生反应,除非在特定条件下发生碳正离子的重排导致碳骨架的改变然后再发生反应。