当前位置:文档之家› 超临界流体技术的应用与原理

超临界流体技术的应用与原理

超临界流体分离技术的原理及应用
超临界流体(SCF)是指在临界温度和临界压力以上的流体,高于临界温度和临界压力而接近临界点状态,称为超临界状态。

处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称为SCF。

超临界流体具有选择性溶解物质的能力,并随着临界条件(T,P)而变化。

超临界流体可从混合物中有选择地溶解其中的某些组分,然后通过减压,升温或吸附将其分离析出。

超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。

在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。

当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。

超临界分离技术的特点:(1)萃取速度高与液体萃取,特别适合于固态物质的分离提取;(2)在接近常温条件下操作,能耗低于一般精馏发,适合于热敏性物质和易氧化物质的分离;(3)传热速率快,温度易于控制;(4)适合于挥发性物质的分离。

超临界流体具有许多不同于一般液体溶剂的物理化学特性,基于超临界流体的萃取技术具有传统萃取技术无法比拟的优势,近年来,超临界流体萃取技术的研究和应用从基础数据、工艺流程到实验设备等方面均有较快的发展。

但由于对超临界流体本身尚缺乏透彻的认识,对其化学反应、传质理论以及反应中热力学的本质问题研究有待深入,而且超临界流体萃取分离技术需要高压装置,因而对工艺设备的要求往往也比较高,需要有较大的投入等原因的客观存在,因此目前超临界流体的大规模实际应用还存在诸多问题需要进一步解决。

目前国际上超临界流体萃取与造粒技术的研究和应用正方兴未艾,技术发展应用范围包括了:萃取(extraction),分离(separation),清洗(cleaning),包覆(coating),浸透(impregnation),颗粒形成(particle formation)与反应(reaction)。

德国,日本和美国已处于领先地位,在医药,化工,食品,轻工,环保等方面研
究成果不断问世,工业化的大型超临界流体设备有5000L~10000L的规模,日本已成功研制出超临界色谱分析仪,而台湾亦有五王粮食公司运用超临界二氧化碳萃取技术进行食米农药残留及重金属的萃取与去除。

目前国际上超临界流体萃取的研究重点已有所转移,为得到纯度较高的高附加值产品,对超临界流体逆流萃取和分馏萃取的研究越来越多。

超临界条件下的反应的研究成为重点,特别是超临界水和超临界二氧化碳条件下的各类反应,更为人们所重视.超临界流体技术应用的领域更为广泛,除了天然产物的提取,有机合成外还有环境保护,材料加工,油漆印染,生物技术和医学等;有关超临界流体技术的基础理论研究得到加强,国际上的这些动向值得我们关注。

由于超临界二氧化碳萃取技术在萃取后能将二氧化碳再次利用,把对环境的污染降至最低,所以未来传统工业若是能以超临界二氧化碳当作主要溶剂,那现在我们这颗唯一的地球,便能得到舒缓。

超临界二氧化碳萃取的优点有以下几点:(1)CO2临界温度和压力都较低,易于工业化;(2)CO2不可燃、无毒、化学稳定性好、易分离,不会产生副反应并且廉价易得;(3)CO2来源于化工副产物,应用过程中易于回收,能够减少温室气体的排放;(4)超临界CO2的溶解能力可通过流体的压力来调节。

(5)超临界CO2处理后的产物易纯化、无溶剂残留;(6)超临界CO2对高聚物有很强的溶胀和扩散能力;(7)超临界CO2对含氟和硅聚合物具有优良的溶解性。

超临界CO2萃取的特点决定了其应用范围十分广阔。

如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。

具体应用可以分为以下几个方面:(1)、从药用植物中萃取生物活性分子,生物碱萃取和分离;(2)、来自不同微生物的类脂脂类,或用于类脂脂类回收,或从配糖和蛋白质中去除类脂脂类;(3)、从多种植物中萃取抗癌物质,特别是从红豆杉树皮和枝叶中获得紫杉醇防治癌症;(4)、维生素,主要是维生素E的萃取;(5)、对各种活性物质(天然的或合成的)进行提纯,除去不需要分子(比如从蔬菜提取物中除掉杀虫剂)或
“渣物”以获得提纯产品;(6)、对各种天然抗菌或抗氧化萃取物的加工,如蜂胶、罗勒、串红、百里香、蒜、洋葱、春黄菊、辣椒粉、甘草和茴香子等。

同时,超临界二氧化碳还应用于材料加工,喷涂,发泡,增塑,清洗,制备超细微粒,聚合反应介质等。

21世纪的化学工业,医药工业等必须通过调整自身的产业结构和产品结构,研究开发清洁化生产和绿色工业的新工艺和新技术。

超临界流体技术就是近30年来迅速发展起来的这样一种新技术.我们应当从这个战略高度来认识超临界流体技术研究和推广应用的重要性,制定研究规划,加大投入,加强对该技术的基础和应用研究,使它真正用于工业化生产,造福于人类,造福于社会。

同时,超临界流体萃取技术还应用于食品,化妆品香料等领域。

在医药工业方面,西德Saarland大学的Stahl教授对许多药用植物采用SCFE法对其有效成分(如各种生物碱,芳香性及油性组分)实现了满意的分离。

在抗生素药品生产中,传统方法常使用丙酮、甲醇等有机溶剂,但要将溶剂完全除去,又不使药物变质非常困难,若采用SCFE法则完全可以符合要求。

美国ADL公司从7种植物中萃取出了治疗癌症的有效成分,使其真正应用于临床。

许多学者认为摄取鱼油和ω-3脂肪酸有益于健康。

这些脂类物质也可以从浮游植物中获得。

这种途径获得的脂类物质不含胆固醇,J.K.Polak等人从藻类中萃取脂类物质获得成功,而且叶绿素不会被超临界CO2萃出,因而省去了传统溶剂萃取的漂白过程。

另外,用SCFE法从银杏叶中提取的银杏黄酮,从鱼的内脏,骨头等提取的多烯不饱和脂肪酸(DHA,EPA),从沙棘籽提取的沙棘油,从蛋黄中提取的卵磷脂等对心脑血管疾病具有独特的疗效。

日本学者宫地洋等从药用植物蛇床子、桑白皮、甘草根、紫草、红花、月见草中提取了有效成分。

在化工方面,在美国超临界技术还用来制备液体燃料。

以甲苯为萃取剂,在Pc=100atm, Tc=400-440℃条件下进行萃取,在SCF溶剂分子的扩散作用下,促进煤有机质发生深度的热分解,能使三分之一的有机质转化为液体产物。

此外,从煤炭中还可以萃取硫等化工产品。

美国最近研制成功用超临界二氧化碳既作反应剂又作萃取剂的新型乙酸制造工艺。

俄罗斯、德国还把SCFE法用于油料脱沥青技术。

在食品方面,传统的食用油提取方法是乙烷萃取法,但此法生产的食用油所含溶剂的量难以满足食品管理法的规定,美国采用超临界二氧化碳萃取法(SCFE)提取豆油获得成功,产品质量大幅度提高,且无污染问题。

目前,已经可以用超临界二氧化碳从葵花籽、红花籽、花生、小麦胚芽、棕榈、可可豆中提取油脂,且提出的油脂中含中性脂质,磷含量低,着色度低,无臭味。

这种方法比传统的压榨法的回收率高,而且不存在溶剂法的溶剂分离问题。

专家们认为这种方法可以使油脂提取工艺发生革命性的改进。

咖啡中含有的咖啡因,多饮对人体有害,因此必须从咖啡中除去。

西德Max-plank煤炭研究所的Zesst博士开发的从咖啡豆中用超临界二氧化碳萃取咖啡因的专题技术,现已由西德的Hag 公司实现了工业化生产,并被世界各国普遍采用。

这一技术的最大优点是取代了原来在产品中仍残留对人体有害的微量卤代烃溶剂,咖啡因的含量可从原来的1%左右降低至0.02%,而且CO2的良好的选择性可以保留咖啡中的芳香物质。

美国ADL公司最近开发了一个用SCFE技术提取酒精的方法,还开发了从油腻的快餐食品中除去过多的油脂,而不失其原有色香味及保有其外观和内部组织结构的技术,且已申请专利。

化妆品香料方面天然香精香料的提取,用SCFE法萃取香料不仅可以有效地提取芳香组分,而且还可以提高产品纯度,能保持其天然香味,如从桂花、茉莉花、菊花、梅花、米兰花、玫瑰花中提取花香精,从胡椒、肉桂、薄荷提取香辛料,从芹菜籽、生姜,莞荽籽、茴香、砂仁、八角、孜然等原料中提取精油,不仅可以用作调味香料,而且一些精油还具有较高的药用价值。

啤酒花是啤酒酿造中不可缺少的添加物,具有独特的香气、清爽度和苦味。

传统方法生产的啤酒花浸膏不含或仅含少量的香精油,破坏了啤酒的风味,而且残存的有机溶剂对人体有害。

超临界萃取技术为酒花浸膏的生产开辟了广阔的前景。

美国SKW公司从啤酒花中萃取啤酒花油,已形成生产规模。

天然色素的提取,目前国际上对天然色素的需求量逐年增加,主要用于食品加工、医药和化妆品,不少发达国家已经规定了不许使用合成色素的最后期限,在我国合成色素的禁用也势在必行。

溶剂法生产的色素纯度差、有异味和溶剂残留,无法满足国际市场对高品质色素的需求。

超临界萃取技术克服了以上这些缺点,目前用SCFE法提取天然色素(辣椒红色素)的技术已经成熟并达到国际先进水平。

相关主题