离散傅里叶变换DFT
FT:傅立叶变换,用于分析连续非周期信号,由于信号是非周期的,它必包含了各种 频率的信号,所以具有时域连续非周期对应频域连续非周期的特点。
DTFT:离散时间傅立叶变换 ,它用于离散非周期序列分析,由于信号是非周期序列, 它必包含了各种频率的信号,所以对离散非周期信号变换后的频谱为连续的,即有时 域离散非周期对应频域连续周期的特点。
DFS:离散时间傅立叶级数 ,离散周期序列信号,取主值序列 ,得出每个主值在各 频率上的频谱分量,这样就表示出了周期序列的频谱特性。
离散性 谐 波性 衰减 性
密度性 连续性 衰 减性
采样
周 期
连续 离散 周期 FS DFS
周 期
非周期 FT DTFT
采样
0 离散性 谐波性 周期性
密度性 连续性 周期性
(1)用傅立叶级数求信号的幅度频谱和相位频谱。
(2)求傅立叶级数逆变换的图形,与原信号图形进行对比。
clear; N=16; xn=[ones(1,N/4),zeros(1,3*N/4)]; xn=[xn,xn,xn]; n=0:3*N-1; k=0:3*N-1; Xk=xn*exp(-j*2*pi/N).^(n‘*k); %DFS变换 x=(Xk*exp(j*2*pi/N).^(n‘*k))/N; %IDFS变换 subplot(2,2,1),stem(n,xn); title('x(n)'); axis([-1,3*N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2),stem(n,abs(x)); %显示IDFS结果 title(‘IDFS|X(k)|’); axis([-1,3*N,1.1*min(x),1.1*max(x)]); subplot(2,2,3);stem(k,abs(Xk)); %序列幅度谱 title('|X(k)|'); axis([-1,3*N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4); stem(k,angle(Xk)); %序列相位谱 title('arg|X(k)|'); axis([-1,3*N,1.1*min(angle(Xk)),1.1*max(angle(Xk))]);
§0、离散时间傅立叶变换
“DTFT”是“Discrete Time Fourier Transformation”的缩写。传统的傅立叶 变换(FT)一般只能用来分析连续时间信号的频谱,而计算机只会处理离 散的数字编码消息,所以应用中需要对大量的离散时间序列信号进行傅立 叶分析。DTFT就是对离散非周期时间信号进行频谱分析的数学工具之一。
§1、傅里叶级数
周期为N的序列 ~x(n) ~x(n rN), (r为整数)
j( 2 )n
基频序列为 e1(n) e N
k次谐波序列为
ek (n)
j( 2 )nk
e N
ekrN (n)
ej
2 N
n(
k
rN
)
ej
2 N
nk
ek (n)
e ∴
j
2 N
nk
也是以N为周期的周期序列
e 故 独所立有成谐分波将~x成(分n)中展{开。j
2 N
nk
}
只有N个是独立的,可以用这N个
因而,离散傅里叶级数的所有谐波成分中只有N个是独立的。因此在展开成 离散傅里叶级数时,我们只能取N个独立的谐波分量,通常取k=0到(N-1).
X~(k) ~x (n) 是一个周期序列的离散傅里叶级数(DFS)变换对,这种对
称关系可表为:
~x (n) IDFS[ X~(k)]
第三章 离散傅里叶变换(DFT)
• 傅立叶级数(DFS) • 傅立叶变换(DFT) • DFT应用 • DFT存在的问题
FS FT DFS DTFT :
FS:傅立叶级数展开 ,用于分析连续周期信号 ,时域上任意连续的周期信号可以分解为 无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应 频域离散非周期的特点 。
1
N 1
X~ (k )e
j
2
N
nk
N k 0
X~ (k )
DFS[~x (n)]
N
1
~x (n)e
j
2
N
nk
n0
习惯上:记
j 2
WN e N
~
X (k) 是周期序列离散傅立叶级数第k次谐波分量的系数,也称为周期序列的
频谱。可将周期为N的序列分解成N个离散的谐波分量的加权和,各谐波
频率ω上却是连续的周期函数。而计算机只能处理变量离散的数字信号。所以,
如果要想利用计算机实现DTFT的运算,必须建立时域离散和频域离散的对应 关系。
当离散的信号为周期序列时,严格的讲,离散时间傅里叶变换是不存在的, 因为它不满足信号序列绝对级数和收敛(绝对可和)这一傅里叶变换的充要 条件,但是采用DFS(离散傅里叶级数)这一分析工具仍然可以对其进行傅 里叶分析。
0
DFT的提出:
离散傅里叶变换不仅具有明确的物理意义,相对于DTFT, 它更便于用计算机处理。但是,直至上个世纪六十年代,由 于数字计算机的处理速度较低以及离散傅里叶变换的计算量 较大,离散傅里叶变换长期得不到真正的应用,快速离散傅 里叶变换算法的提出,才得以显现出离散傅里叶变换的强大 功能,并被广泛地应用于各种数字信号处理系统中。近年来, 计算机的处理速率有了惊人的发展,同时在数字信号处理领 域出现了许多新的方法,但在许多应用中始终无法替代离散 傅里叶变换及其快速算法。
的频率为
2 N
k
,幅度为
1 N
~
X (k)
WN的性质:
WN
e
j
2 N
1.周期性
WNnΒιβλιοθήκη W (nrN N)
2.共轭对称性 WNn (WNn )*
3.可约性
W rn rN
WNn
4.正交性
1
N
N 1
WNkn (WNmn )*
n0
1 N
N 1
W (mk)n N
n0
1 0
mk mk
则DFS变换对可写为
X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
2
其中ω为数字角频率,单位为弧度。 注意:非周期序列,包含了各种频率的信号。
局限性:离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分 析中具有重要的理论意义。但在用计算机实现运算方面比较困难。这是因为, 在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在数字角
与连续周期信号的傅立叶级数相比较,周期序列的离散傅立叶 级数的特点:
(1)连续性周期信号的傅立叶级数对应的谐波分量的系数有 无穷多。而周期为N的周期序列,其离散傅立叶级数谐波分量 只有N个是独立的。
(2)周期序列的频谱
~
X
(k)
也是一个以N为周期的周期序列。
例:一个周期矩形序列的脉冲宽度占整个周期的1/4,一个周 期的采样点数为16点,显示3个周期的信号序列波形,并要 求:
X~(k) N 1 ~x (n)WNkn DFS~x (n) n0
~x(n)
1 N
N
1
X~
(k
)W
N
kn
k 0
IDFS
X~ (k )
DFS[·] ——离散傅里叶级数变换
IDFS[·]——离散傅里叶级数反变换。
DFS变换对公式表明,一个周期序列虽然是无穷长序列,但是只要知 道它一个周期的内容(一个周期内信号的变化情况),其它的内容也就都 知道了,所以这种无穷长序列实际上只有N个序列值的信息是有用的,因 此周期序列与有限长序列有着本质的联系。