当前位置:文档之家› 人工智能研究报告-副本

人工智能研究报告-副本

人工智能研究报告产生背景人工智能的出现不是偶然的,它是人们长期以来探索和研制能进行计算、推理和思维的智能机器的必然结果。

自古以来,人们一直在试图用各种机器来代替人的部分脑力劳动,以提高人类征服自然和改造自然的能力。

古希腊的哲学家亚里士多德就提出了形式逻辑问题。

12世纪末至13世纪初,西班牙逻辑学家卢乐提出了制造可以解决各种问题的通用逻辑机。

17世纪,法国的物理学家和数学家帕斯卡制造出世界上第一台机械式加法器,并得到广泛应用。

随后德国哲学家和数学家莱布尼茨在帕斯卡加法器的基础上进一步制成了可进行四则运算的计算器。

莱布尼茨还提出了“符号语言”和“思维演算”的重要设想,他认为:必须将人的思维代数几何化,即像代数那样按照公式来思考,像几何那样直观的通过图画来思维。

这一思想导致了后来的数理逻辑的诞生,成为了现代机器思维设计思想的萌芽。

19世纪,英国数学家布尔在《思维法则》一书中,第一次用符号语言描述了思维活动中推理的基本法则,创立了布尔代数。

英国数学家和发明家巴贝奇发明了差分机和分析机,其中分析机的设计思想与现代电子计算机十分相似。

虽然巴贝奇的发明在当时没有得到实现和收到应有的重视,但是他的科学思想为研制“思维机器”做出了巨大的贡献。

20世纪30年代,英国数学家图灵开始了寻求智力机的研究工作。

1937年,图灵发表了“理想自动机”的论文,该文给可计算性这一概念下了严格的数学定义,并论证了任何需要精确的加以确定的计算过程,都能由“图灵机”完成,为人们清晰地描绘出理想自动机的蓝图,同时也为电子计算机的诞生奠定了基础。

(1937年,伦敦权威的数学杂志又收到图灵一篇论文《论可计算数及其在判定问题中的应用》,作为阐明现代电脑原理的开山之作,被永远载入了计算机的发展史册。

这篇论文原本是为了解决一个基础性的数学问题:是否只要给人以足够的时间演算,数学函数都能够通过有限次机械步骤求得解答?传统数学家当然只会想到用公式推导证明它是否成立,可是图林独辟蹊径地想出了一台冥冥之中的机器。

图林想象的机器说起来很简单:该计算机使用一条无限长度的纸带,纸带被划分成许多方格,有的方格被画上斜线,代表“1”;有的没有画任何线条,代表“0”。

该计算机有一个读写头部件,可以从带子上读出信息,也可以往空方格里写下信息。

该计算机仅有的功能是:把纸带向右移动一格,然后把“1”变成“0”,或者相反把“0”变成“1”。

图林设计的“理想计算机”被后人称为“图林机”,实际上是一种不考虑硬件状态的计算机逻辑结构。

图林还提出可以设计出另一种“万能图林机”,用来模拟其它任何一台“图林机”工作,从而首创了通用计算机的原始模型。

图林甚至还想到把程序和数据都储存在纸带上,比冯·诺依曼更早提出了“储存程序”的概念。

1945年,匈牙利数学家冯诺依曼提出了存储程序的思想,在计算机领域建立了不朽的功勋。

目前的计算机体系结构仍然是冯诺依曼型的。

1946年,美国数学家、电子计算机先驱莫克利和他的研究生埃克特合作,成功研制了世界上第一台电子数字计算机ENIAC,为机器智能的研究和实现提供了物质基础。

1950年,图林来到曼彻斯特大学任教,并被指定为该大学自动计算机项目的负责人。

就在这年10月,他的又一篇划时代论文《计算机与智能》发表。

这篇文章后来被改名为《机器能思维吗?》,它引来的惊雷,今天还在震撼着电脑的世纪。

在“第一代电脑”占统治地位的时期,这篇论文甚至可以作为“第五代电脑”和“第六代电脑”的宣言书。

图林写道:你无法制造一台替你思考的机器,这是人们一般会毫无疑义接受下来的老生长谈。

我的论点是:与人脑的活动方式极为相似的机器是可以制造出来的。

更有趣的是,图林还设计了一个“图林试验”,试图通过让机器模仿人回答某些问题,判断它是否具备智能。

图林试验采用“问”与“答”模式,即观察者通过控制打字机向两个试验对象通话,其中一个是人,另一个是机器。

要求观察者不断提出各种问题,从而辨别回答者是人还是机器。

这个实验的大致内容是:一个房间放一台机器,另一房间有一个人,当人们提出问题,房间在不接触对象的情况下,同对象进行一系列对话,如果他不能根据这些对话判断出对象是人还是计算机,那么就可以认为这台计算机具有与人相当的智能。

虽然图灵实验巧妙地绕开了哲学的陷阱,通过实验现象说明计算机能模拟人类智能的事实,但是从科学哲学的角度来看,图铃实验存在着一些令人质疑的地方,用实验的方式来定义机器的思维也不够严谨。

尽管如此,图灵关于机器思维定义的开创性工作对后人的研究具有重要的指导意义,图铃实验对人工智能的产生起到了非常重要的作用。

) 此外,美国数学家维纳创立的控制论,美国应用数学家香农创立的信息论,美籍奥地利生物学家贝塔朗菲创立的系统论,美国神经生物学家麦克卡洛奇和皮特斯建立的第一个神经网络模型等等理论成果,以及这些学科与计算机科学、心理学、数学和哲学等领域多种学科相互渗透和交叉取得的一系列令人振奋的研究成果,都为人工智能的诞生奠定了理论、技术和物质基础。

现状分析80年代以来,随着计算机网络的普及,特别是Internet的出现,各种计算机技术包括人工智能技术的广泛应用推动着人机关系的重大变化。

据日美等国未来学家的预测,人机关系正在迅速地从“以人为纽带”的传统模式向“以机为纽带”的新模式转变人机关系的这一转变将引起社会生产方式和生活方式的巨大变化,同时也向人工智能乃至整个信息技术提出了新的课题。

这促使人工智能进入第三个发展时期。

在这个新的发展时期中,人工智能面临一系列新的应用需求。

首先是需要提供强有力的技术手段,以支持分布式协同工作方式,现代生产是一种社会化大生产,来自不同专业的工作者在不同或相同的时间、地点从事着同一任务的不同子任务。

这要求计算机不仅为每一项子任务提供辅助和支持,更需要为子任务之间的协调提供辅助和支持。

由于各个子任务在很大程度上可以独立地进行,子任务之间的关系必然呈现出动态变化和难以预测的特点。

于是,子任务之间的协调(即对分布协同工作的支持)向人工智能乃至整个信息技术以及基础理论提出了巨大的挑战。

其次,网络化推进了信息化,使原本分散孤立的数据库形成一个互连的整体,即一个共同的信息空间。

尽管现有的浏览器和搜索引擎为用户在网上查找信息提供了必要的帮助,这种帮助是远远不够的,以至于“信息过载”与“信息迷失”状况日益严重。

更强大的智能型信息服务工具已成为广大用户的迫切需要。

另一方面,信息空间对人类的价值不仅在于单独的信息条目(比如某厂家生产出了某一新产品的信息),还远在于一大类信息中隐藏着的普遍性知识(比如某个行业供求关系的变化趋势)。

于是,数据中的知识发现也成为一项迫切的研究课题。

机器人始终是现代工业的迫切需求。

随着机器人技术的发展,研究重点已经转向能在动态、不可预测环境中独立工作的自主机器人,以及能与其他机器人(包括人)协作的机器人。

显然,这种机器人之间的合作可以看成是物理世界中的分布式协同工作,因而包括相同的理论和技术问题。

由此可见,人工智能第三发展时期的突出特点是研究能够在动态、不可预测环境中自主、协调工作的计算机系统,这种系统被称为Agent 。

目前,正围绕着Agent的理论、Agent的体系结构和Agent语言三个方面展开研究,并已产生一系列重要的新思想、新理论、新方法和新技术。

在这一研究中,人工智能呈现一种与软件工程、分布式计算以及通讯技术相互融合的趋势。

Agent研究的应用不限于生产和工作,还深入到人们的学习和娱乐等各个方面。

例如,Agent与虚拟现实相结合而产生的虚拟训练系统,可以使学生在不实际操纵飞机的情况下学飞行的基本技能;类似地,也可使顾客“享受”实战的“滋味”。

我国也先后成立中国人工智能学会、中国计算机学会人工智能和模式识别专业委员会和中国自动化学会模式识别与机器智能专业委员会等学术团体,开展这方面的学术交流。

此外国家还着手兴建了若干个与人工智能研究有关的国家重点实验室,这些都将促进我国人工智能的研究,为这一学科的发展作出贡献。

综观人工智能学习的发展历程,可以看出它始终遵循的基本思路。

首先是强调人类智能的人工实现而不是单纯的模拟,以便尽可能地为人类的实际需要服务。

其次是强调多学科的交叉结合,数学、信息科学、生物学、心理学、生理学、生态学以及非线性科学等等越来越多的新生学科被融入到人工智能学习的研究之中。

研究途径从国际范围来看,人工智能的研究途径主要有三条。

第一,生理学途径,采用仿生学的方法,模拟动物和人的感官以及大脑的结构和机能,制成神经元模型和脑模型;第二,心理学途径,应用实验心理学方法,总结人们思维活动的规律,用电子计算机进行心理模拟;第三,工程技术途径,研究怎样用电子计算机从功能上模拟人的智能行为。

目前,第三种研究方法发展较快。

它也从前两种方法中吸收新的思想,依靠新的启示扩大自己的成果。

传统人工智能是符号主义,它以Newell和Simon提出的物理符号系统假设为基础。

物理符号系统是由一组符号实体组成,它们都是物理模式,可在符号结构的实体中作为组成成分出现,可通过各种操作生成其它符号结构。

物理符号系统假设认为:物理符号系统是智能行为的充分和必要条件。

主要工作是“通用问题求解程序”:通过抽象,将一个现实系统变成一个符号系统,基于此符号系统,使用动态搜索方法求解问题。

连接主义学派是从人的大脑神经系统结构出发,研究非程序的、适应性的、大脑风格的信息处理的本质和能力,研究大量简单的神经元的集团信息处理能力及其动态行为。

人们也称之为神经计算。

研究重点是侧重于模拟和实现人的认识过程中的感觉、知觉过程、形象思维、分布式记忆和自学习、自组织过程。

主要技术和发展趋势目前人工智能学习研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。

智能接口技术是研究如何使人们能够方便自然地与计算机交流。

为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。

因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。

目前,智能接口技术已经取得了显着成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。

主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。

主体是具有信念、愿望、意图、能力、选择和承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。

相关主题