生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。
--泰戈尔数学公式导数公式:基本积分表:等价无穷小量代换 ()时,有:当0→x ϕx x ~sin x x ~tan x x ~arcsin x x ~arctana x x aa a ctgxx x tgxx x xctgx xtgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 22222222C ax x a dx Cx a x a a x a dx Ca x a x a a x dx C ax arctg a x a dx Cctgx x xdx Ctgx x xdx Cx ctgxdx Cx tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I nn xdx xdx I n n n n arcsin 22ln 22)ln(221cos sin 222222222222222222222020ππa x a x ln ~1-x e x ~1-()ax x a ~1+x nx n 1~11-+ ()x x ~1ln +221~cos 1x x -两个重要极限:高阶导数公式()n m n m x n m m m x -+--=)1)......(1(()!n x n n = ()()n x n x a a a ln =()ax n n ax e a e =()⎪⎭⎫ ⎝⎛⋅+=2sin sin πn x x n ()⎪⎭⎫ ⎝⎛⋅+=2cos cos πn x x n ()()x n x e x n xe +=()()1!11+--=⎪⎭⎫ ⎝⎛-n n n a x n a x ——莱布尼兹(Leibniz )公式: )()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n n k k k n k n n uv v u k k n n n v u n n v nu v u vu C uv +++--++''-+'+==---=-∑ 泰勒公式:e x =1+x+!22x +!33x +…+!n x n+ … sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + … cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ … ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + … tan -1 x = x-33x +55x -77x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 中值定理与导数应用:...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ多元函数微分法及应用zyz xy x y x y x y x F F y z F F x z z y x F dxdyF F y F F x dx y d F F dx dy y x F dy y vdx x vdv dy y udx x udu y x v v y x u u xvv z x u u z x z y x v y x u f z t vv z t uu zdt dzt v t u f z yy x f x y x f dz z dzz udy y u dx x u du dy y z dx x zdz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22多元函数的极值及其求法:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x常数项级数:是发散的调和级数:等差数列:等比数列:n n n n qq q q q nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim 2111lim 1211ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p nn n n幂级数:0010)3(lim )3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ 函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ 一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n x x x x x x x n n m m m x m m mx x n n n m 一阶线性微分方程:)1,0()()(2))((0)(,0)()()(1)()()(≠=+⎰+⎰=≠⎰===+⎰--n y x Q y x P dxdy e C dx e x Q y x Q Ce y x Q x Q y x P dxdy n dx x P dx x P dx x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:全微分方程:通解。
应该是该全微分方程的,,其中:分方程,即:中左端是某函数的全微如果C y x u y x Q yu y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=∂∂=∂∂=+==+),(),(),(0),(),(),(0),(),( 二阶微分方程:时为非齐次时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d 二阶常系数齐次线性微分方程及其解法:型为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''二阶常系数非齐次线性微分方程2122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:为常数;,其中∆'''=++∆=+'+''式的通解:出的不同情况,按下表写、根据(*),3。