当前位置:文档之家› 预应力混凝土连续梁桥

预应力混凝土连续梁桥

预应力混凝土连续梁桥姓名班级学号联系方式:摘要:随着现代化步伐的加快,我国基础设施建设正以前所未有的规模在全国展开,同时质量问题越来越成为人们关注的焦点。

预应力混凝土连续梁桥是预应力桥梁中的一种,它具有整体性能好、结构刚度大、变形小、抗震性能好,特别是主梁变形挠曲线平缓,桥面伸缩缝少,行车舒适等优点。

上述种种因素使得这种桥型在公路、城市和铁路桥梁工程中得到广泛采用。

在连续梁桥的施工方法中,常用的有满堂支架法、悬臂法、顶推法、先简支后连续等施工方法。

关键词:预应力混凝土连续梁桥结构设计施工方法悬臂法顶推法Prestressed concrete continuous girder bridgeWith the quickening pace of modernization, China's infrastructure construction is on an unprecedented scale in the national expansion, and at the same time, quality problem is becoming more and more become the focus of attention. Prestressed concrete continuous girder bridge is one of the prestressed bridge, it has the overall performance is good, the structure stiffness and deformation is small, the seismic performance is good, especially the main girder deformation deflection line gentle, floor less expansion joints, driving comfort etc. All of these factors make this bridge in highway, city and railway bridge engineering widely adopted. In the continuous girder bridge construction method, commonly used have full framing method, the cantilever method, pushing method, first Jane after a continuous construction method. Keywords: prestressed concrete continuous girder bridge structure design construction method of cantilever method pushing method1.我国预应力混凝土连续梁桥的概况与工程实践1.1概况自60年代中期在德国莱茵河上采用悬臂浇筑法建成Bendorf桥以来,悬臂浇筑施工法和悬臂拼装施工法得到不断改进、完善和推广应用,从而使得预应力混凝土连续梁桥成为许多国家广泛采用的桥型之一。

我国自50年代中期开始修建预应力混凝土梁桥,至今已有40多年的历史,比欧洲起步晚,但近对年来发展迅速,在预应力混凝土桥梁的设计、结构分析、试验研究、预应力材料及工艺设备、施工工艺等方面日新月异,预应力混凝土梁桥的设计技术与施工技术都已达到相当高的水平。

1.2工程实践预应力混凝土连续梁桥是预应力桥梁中的一种,它具有整体性能好、结构刚度大、变形小、抗震性能好,特别是主梁变形挠曲线平缓,桥面伸缩缝少,行车舒适等优点。

加上这种桥型的设计施工均较成熟,施工质量和施工工期能得到控制,成桥后养护工作量小。

预应力混凝土连续梁的适用范围一般在150m以内,上述种种因素使得这种桥型在公路、城市和铁路桥梁工程中得到广泛采用。

目前我国已建成的有代表性的大跨径公路和城市预应力混凝土连续梁桥如表所示。

[1]2.我国预应力混凝土连续梁桥的发展2.1桥梁设计技术2.1.1主要设计规范[2]a.1978年交通部颁布了我国第一部《公路预应力混凝土桥梁设计规范》,该规范按单一系数极限状态设计理论编制,比以往采用的破坏阶段理论规范前进了一步。

b.1985年交通部颁布了《公路桥涵设计规范》,其中《公路钢筋混凝土预应力混凝土桥涵设计规范》(JTJ023-85将单一系数改成多系数,以塑性理论为基础作强度极限计算,以弹塑性或弹性理论为基础作正常使用极限计算。

85规范原则上是参照1978年CEB-FIP的《国际标准规范》,即《Medelcodeforcon-creteStrUctures》编制的。

c.JTK023-85规范允许桥梁构件按部分预应力混凝土(ppc)设计。

·A类构件--在短期荷载作用了截面受拉边缘允许出现拉应力,但拉应力值不超过规范中的规定限值,如有些箱梁的顶板横向预应力是按A类构件设计的。

·B类构件--在短期荷载作用下,截面受拉边缘允许出现裂缝,即拉应力值超过规范中的规定限值,目前在大跨径预应力箱梁桥设计中未见采用。

·PPC构件具有节约钢材、降低造价、能减少由预应力引起的反拱度、改善结构受力性能等优点,已在一般公路桥梁和城市桥梁工程中逐步推广应用。

2.1.2桥梁结构分析专用软件和CAD技术a.自70年代后期以来,我国桥梁结构分析专用软件和CAD技术得到大力开发和应用。

其中包括采用有限元法编制的桥梁通用综合程序以及许多桥梁专用程序,实现设计、计算。

绘图一体化,大大提高了计算精度和速度,特别是用于大量重复计算、局部应力分析、设计方案优化。

大跨径预应力混凝土桥梁的结构分析设计软件开发和推广应用,适应了我国桥梁建设高速发展的需要。

b.计算机技术已被广泛应用于大跨径预应力混凝土连续梁桥的施工控制。

使得成桥后的线型平顺,符合桥梁的纵向设计标高;桥梁结构的受力状态能与设计计算一致。

2.2桥梁施工技术在我国中小跨径的预应力混凝土连续梁桥施工中,除了最古老的支架现浇方法外,还采用了先简支后连续、顶推法、移动模架逐孔浇筑法、移动导梁逐孔拼装法和梁体预制浮吊安装法等施工技术。

平衡悬臂拼装施工法和平衡悬臂浇筑施工法的采用促进了预应力混凝土连续梁桥的发展。

大跨径预应力混凝土连续梁桥大多采用悬臂浇筑法施工。

根据连续梁桥的特点,采用逐段平衡悬臂浇筑,先形成T构,再逐跨合龙,逐跨释放临时固定支座,完成体系转换,最终形成多跨预应力混凝土连续梁桥。

大跨径预应力混凝土连续箱梁广泛采用挂篮进行悬臂浇筑施工。

常用的挂篮形式有偏架式和斜拉式。

随着施工技术的进步,挂篮结构向着轻型化的方向发展,尽可能采用构造合理、受力明确、自重轻、利用系数高、使用安全方便,具有良好技术经济指标的挂篮。

例如,上海黄浦江奉浦大桥等工程采用的菱型挂篮就是其中之一,该挂篮总重仅50t,利用系数为4.02.3材料的运用高强度预应力钢材、高标号混凝土和大吨位预应力锚固体系的研制开发和应用,促进了大跨径预应力混凝土连续梁桥的发展。

在80年代后期,国内开始生产18edMPa的低松弛预应力钢绞线,加上与其配套的大吨位预应力钱具和张拉设备的研制成功.C50与C60混凝土的应用,使得预应力连续梁桥结构轻型化,跨越能力得到很大提高。

在这以前,我国大量采用16000MPaφ5的高强度碳素钢丝和与其配套的钢质锥形锚(即F式锚具)这种锚具的张拉吨位小.使用时的控制张拉力仅565kN,每张拉10kN预应力需要的布柬面积约为0.255cm2/kN;若采用φj15.2~12型锚具.张拉10kN预应力所需的布束面积约为0.096 cm2/kN;采用φj15.2~22型的锚具时,张拉10kN预应力所需的布柬面积约为0.067cm2/kN。

三者的比例为1:0.38:0.26,由此可以看到,采用大吨位预应锚具体系后,使得预应力箱梁布柬范围内的顶板、腹板和底板尺寸,设计时由原来的布柬控制改为受力控制和按构造要求控制,这样,大大减小百箱梁断面的尺寸,减轻了上部结构的自重。

箱梁混凝土及钢绞线的用量能够大大减少,从而使得预应力结构设计更趋合理、经济。

若采用以往的钢质锥形锚具,预应力混凝土连续梁的跨越能力大多在100m左右。

随着1860MPa钢绞线和大吨位预应力锚固体系的应用,建桥施工技术的发展,目前,我国连续梁桥的最大跨径已达165。

连续剧构桥的最大跨径达到270。

,从而使得我国预应力混凝土梁桥的设计、施工技术进入世界先进行列。

[5]3.预应力混凝土连续梁桥的特点[3]众所周知,普通混凝土框结构由于跨度小、柱网密,无法满足多种功能的需要,而预应力可以有效解决以上问题。

预应力混凝土能充分发挥材料的效能,在相同条件下,它比普通钢筋混凝土构件截面小,重量轻、刚度大,抗裂性和耐久性好,能有效地控制结构的挠度(甚至无挠度),节约钢材40%~50%,节约混凝土20%~40%,特别在大跨度结构中更为经济。

在张拉预应力连续梁桥结构中,结构构件在承受外荷载前,预先对外荷载产生拉应力部位的混凝土预加压应力,造成人为的压应力状态,预加压应力可以抵消外荷载所引起的大部分或全部拉应力,这样在外荷载作用下混凝土拉应力不大或处于受压状态,使混凝土结构不开裂,提高结构的刚度和结构的耐久性。

张拉法预应力混凝土施工是在浇筑混凝土前张拉预应力钢筋,将其固定在台座或钢模上,然后浇筑混凝土,等混凝土达到规定强度。

保证预应力钢筋与混凝土有足够粘结力时放松预应力钢筋,借助预应力筋的弹性回缩及与混凝土的粘结,使混凝土产生预压应力。

同时其具有较强的变形恢复能力,抗震性能明显高于普通钢筋混凝土结构,而且便于震后加固。

值得注意的一点是,预应力混凝土由于自重轻,按理含钢量应该少,但由于现在的设计水平问题,此部分并没有减少。

反而很多设计含钢量大了,很大程度造成主体结构成本增加。

4.预应力混凝土连续梁桥的设计4.1预应力混凝土连续梁桥设计的内容[1]荷载。

施工时的荷载条件中,预应力荷载应按扣除第一批预应力损失后的有效应力来确定;其他荷载应根据施工阶段可能的最不利荷载情况来定。

而施工时的支撑条件应考虑施工方案的具体情况来定,模板周转情况影响施工阶段的结构分析模型的支撑条件与荷载条件的选取。

极限设计。

对预应力板各截面进行多种可能的荷载效应组合的受弯强度设计,计算时要考虑预应力产生的次弯矩的影响。

采用混合配筋设置非预应力筋,提高结构在地震作用下的延性和能量吸收,可有效分散受拉区裂缝,改善结构的受力性能。

对无粘编者按预应力砼连续结构作补充设计,选取合适的荷载效应值与材料参数,验算抵抗预应力筋失效时连续倒塌所需的非预应力筋用量。

相关主题