【最新整理,下载后即可编辑】化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V =RT P=68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -20.0867c c RT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106=58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式673 3.53190.6r T T Tc ===664.053100.8814.610r P P Pc ⨯===⨯因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。
由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43)010.02690.0080.1380.0281BPcB B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3 m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。
实验值为3.090MPa 。
解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225 (1)Van der Waals 方程2RT aP V b V=--式中222764c cR T a p =2227(8.314)(304.2)647.376⨯⨯=⨯=3.658×105 MPa ·cm 6·mol -28c c RT b p ==8.314304.287.376⨯⨯=42.86 cm 3·mol -1 则得8.314273.15550.142.86P ⨯=--523.65810(550.1)⨯=3.268 Mpa误差%=3.090 3.2683.090-×100%=-5.76%(2)R-K 方程0.5()RT ap V b T V V b =--+ 2 2.50.42748c cR T a p ==2 2.50.42748(8.314)(304.2)7.376⨯⨯=6.466×106MPa ·cm 6·K 0.5·mol -20.0867ccRT b p ==0.08678.314304.27.376⨯⨯=29.71cm 3·mol -1则得8.314273.15550.129.71P ⨯=--60.5 6.46610(273.15)(550.1)(550.129.71)⨯⨯⨯+=3.137Mpa 误差%=3.090 3.1373.090-×100%=-1.52%(3)S-R-K 方程()()RT a T P V b V V b =--+ 式中()()()220.42748c c cR T a T a T T p αα==20.5()1'(1-)T m Tr α⎡⎤=+⎣⎦22'0.480 1.5740.176 =0.480+1.5740.225-0.1760.2250.8252m ωω=+-⨯⨯=得2273.15()10.82521- 1.088304.2T α⎧⎫⎡⎤⎛⎫=+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ ()2250.42748(8.314)(304.2) 1.088 4.033107.376a T ⨯⨯=⨯=⨯ MPa ·cm 6·mol -2又 0.0867cc RT b p ==0.08678.314304.27.376⨯⨯=29.71cm 3·mol -1将有关的值代入S-R-K 程,得8.314273.15550.129.71P ⨯=--54.03310550.1(550.129.71)⨯+=3.099 Mpa 误差%=3.090 3.0993.090-×100%=-0.291%比较(1)、(2)与(3)结果,说明Van der waals 方程计算误差较大,S-R-K 方程的计算精度较R-K 方程高。
2.3试用下列各种方法计算水蒸气在10.3MPa 和643K 下的摩尔体积,并与水蒸气表查出的数据(V=0.0232m 3·kg -1)进行比较。
已知水的临界常数及偏心因子为:Tc=647.3K ,Pc=22.05MPa ,ω=0.344。
(a )理想气体方程;(b )R-K 方程;(c )普遍化关系式。
解: (a )理想气体方程V=RT/P=8.314×10-3×643/10.3=0.519 m 3·kmol -1=0.0288 m 3·kg -1 误差%=0.02320.0288100%0.0232-⨯=-24.1%(b )R-K 方程为便于迭代,采用下列形式的R-K 方程:1.5111a h Z h bRT h ⎛⎫=- ⎪-+⎝⎭--------(A)式中b bph V ZRT==---------(B) 2 2.50.42748R Tc a Pc ==32 2.50.42748(8.31410)(647.3)22.05-⨯⨯=14.29 MPa ·m 6·K 0.5kmol -20.08664RTc b Pc==30.086648.31410647.322.05-⨯⨯⨯=0.02115 m 3·kmol -11.5abRT=3 1.514.290.02115(8.31410)(643)-⨯⨯⨯=4.984 b RT =30.021158.31410643-⨯⨯=3.956×10-3 MPa -1将上述有关值分别代入式(A )和(B )得:1 4.98411h Z h h ⎛⎫=- ⎪-+⎝⎭--------(C)33.9561010.3h Z -⨯⨯==0.04075Z--------(D)利用式(C )和式(D )迭代求解得:Z=0.8154因此 ZRTV P==30.81548.3141064310.3-⨯⨯⨯=0.4232 m 3·kmol -1=0.02351 m 3·kg -1误差%=0.02320.02351100%0.0232-⨯=-1.34%(c) 普遍化关系式6430.993647.3T Tr Tc ===10.30.46722.05P Pr Pc === 由于对比温度和对比压力所代表的点位于图2-9的曲线上方,故用普遍化第二维里系数关系式计算。
0 1.6 1.60.4220.4220.0830.0830.344(0.993)r B T =-=-=- 1 4.2 4.20.1720.1720.1390.1390.0382(0.993)r B T =-=-=-由式(2-43)010.3440.3440.357ccBP B B RT =+=-+⨯=-ω(-0.0382) 将有关数据代入式(2.42)得:0.467111(0.357)0.8320.993c r c rBP P BPZ RT RT T ⎛⎫⎛⎫=+=+=+-⨯= ⎪⎪⎝⎭⎝⎭ 则 30.8328.314106430.43210.3ZRT V P -⨯⨯⨯===m 3·kmol -1=0.024 m 3·kg -1 误差%=0.02320.024100%0.0232-⨯=-3.45%2.4试分别用下述方法计算CO 2(1)和丙烷(2)以3.5:6.5的摩尔比混合的混合物在400K 和13.78MPa 下的摩尔体积。
(1) Redlich-Kwong 方程,采用Prausnitz 建议的混合规则(令k ij =0.1); (2) Pitzer 的普遍化压缩因子关系式。
解 (1)Redlich-Kwong 方程由附录二查得CO 2和丙烷的临界参数值,把这些值代入式(2-53)-式(2-57)以及0.0867ciiRT b P =和2 2.50.4278cij ij R T a P =,得出如下结果:b m =y 1b 1+y 2b 2=0.35×0.0297+0.65×0.0628=0.0512 m 3·kmol -1a m =y 12a 11+2y 1y 2a 12+y 22a 22=0.352×6.470+2×0.35×0.65×9.519+0.652×18.315 =12.862 MPa ·m 6·K 0.5kmol -2先用R-K 方程的另一形式来计算Z 值1.5111a h Z h bRT h ⎛⎫=- ⎪-+⎝⎭--------(A)式中b bph V ZRT==---------(B)1.5abRT=3 1.512.8620.0512(8.31410)(400)-⨯⨯⨯=3.777 bp RT =30.051213.788.31410400-⨯⨯⨯=0.2122 将 1.5a bRT 和bp RT的值分别代入式(A )和(B )得: 1 3.77711h Z h h ⎛⎫=- ⎪-+⎝⎭--------(C) 0.2122h Z= --------(D) 联立式(C )和式(D )迭代求解得: Z=0.5688, h=0.3731 因此ZRT V P==30.56888.3141040013.78-⨯⨯⨯=0.137 m 3·kmol -1(3) Pitzer 的普遍化压缩因子关系式 求出混合物的虚拟临界常数:T cm =y 1T c11+y 2T c22=0.35×304.2+0.65×369.8=346.8KP cm =y 1P c11+y2P c22=0.35×7.376+0.65×4.246=5.342MpaT rm =400346.8=1.15 P rm =13.785.342=2.58在此对比条件下,从图2-7和图2-8查得Z 0和Z 1值: Z 0=0.480, Z 1=0.025 ω =()i y ∑i ω=y 1ω1+y 2ω2=0.35×0.225+0.65×0.152=0.173 由式(2-38)Z=Z 0+ωZ 1=0.480+0.173×0.025=0.484由此得 V =ZRTP=30.4848.3141040013.78-⨯⨯⨯=0.117 m 3·kmol -1化工热力学第三章作业解答3.1试证明同一理想气体在T-S 图上,(1)任何二等压线在相同温度时有相同斜率;(2)任何二等容线在相同温度时有相同斜率。