当前位置:
文档之家› 中央空调节能技术改造方案培训讲学
中央空调节能技术改造方案培训讲学
统负荷变化; • 机组启停时间顺序优化控制; • 智能化管理计算机以提高机组运行管理水平,避免不必要的能量浪费; • 采用环保节能新风处理系统,减少能量损耗;
中央空调智能节电控制系统
• 溶入了中央空调系统运行特性物理数学模型、人工智能和实际运行经 验修正等思想;
• 由计算机工作站后台程序实时运行物理数学模型自动寻优,以获取不 同负荷、不同室外环境等条件下空调系统最优运行工况;
• 维持冷却塔的出水温度在32~37℃之间可以保证空调系统较高的运行 效率,同时也能节约冷却塔风机能耗,通常可以采用变频或者通断控 制来实现;
• 可采用EMC 007实现。
冷冻水泵变频控制
• 空调区域功能多样性决定了冷冻水流量的相应变化规律,根据空调系统 的负荷率、空调系统各用户负荷率变化特征以及末端设备的传热除湿性 能,采用变频器对冷冻水进行变频控制,一般有基于定压差控制、定温 差和变温差控制技术等控制来实现节能控制;
• 没有PC接口或未知设备数据通讯协议,则通过温度传感器、压力传感 器、电量传感器等变送元件实现各监测参数的模拟量化,并由数据采 集卡或数据采集模块将其转换为数字信号,通过数据网络与工作站计 算机实现数据通讯。
冷却水泵冷却塔 变频控制
• 根据设计工况(出水/回水温差、压力、流量等)调节冷却水泵工作 频率,通常从35Hz到49Hz;
40
51.2
35
34.3
30
21.625ຫໍສະໝຸດ 12.5节电率% 0
27.1 48.8 65.7 78.4 87.5
送风系统控制
• 风系统主要是有风柜、空气处理机组、风机盘管等设备构成,依据空 调区域负荷变化时间序列,远程控制风柜各个风机的启停实现有级调 节送风量,也可变频调节空气处理机组实现送风量的无级调节,根据 室内CO2浓度控制系统新风量;
• 冷冻水出水温度升高,可提高冷水机组的运行效率,冷冻 水平均温度每升高1℃,冷水机组的运行效率提高3%。
操作员工作站
• 所有的数据采集信号由串口通讯(R232、R485、R422等)网路接入计 算机工作站,工作站独立完成空调系统数据采集、后台数据分析与数 学模型寻优、远程控制等工作;
• 可采用个人计算机PC。
工程师工作站
• 数台操作员级工作站由网络交换机连接成工业以太网,由工程师级工 作站对所有操作员级工作站以Web站点访问的方式进行远程监控和数 据共享。在局域网外围接入路由器可将控制系统与internet广域网连 接,实现局域网以外的远程监控和数据共享。
冷水机组运行监控
冷冻水泵变频控制
送风系统控制
数据采集和控制
通信网路系统
冷水机组群控
操作员工作站
工程师工作站
冷水机组运行监控
• 主要包括冷冻水进出水温度、冷却水进出水温度、蒸发压力、冷凝压 力、主机电流、主机负荷率等主要参数的监控。
• 具有PC接口的机组,可通过其数据通讯协议直接获取机组运行各参数, 并实现远程控制;
• 可采用EMC 007实现。
数据采集和控制
• 控制系统的所有监控参数,都是由数据采集模块或数据 采集卡来实现,通过中间继电器或固态继电器实现计算 机工作站弱电控制向空调系统强电控制的承接;
• 主要功能由EMC 007主控制柜实现。
冷水机组群控
• 根据空调系统的负荷率,以及该空调系统用户负荷率变化 特征,智能控制冷水机组的台数和冷冻水出水温度,冷水 机组在低负荷运行时可以充分利用蒸发器和冷凝器的换热 能力,减小换热温差,提高冷水机组的运行效率。
中央空调节能技术改造方案 中央空调智能节能控制系统
EMC 007
民用建筑能耗情况分析
电 柴油/煤/天然气 其它
60
50
40
30
20
10
0 中央空调 电梯
水泵
风机
照明
中央空调结构
中央空调系统包括 • 冷水机组 • 冷冻水循环系统 • 空气处理系统 • 冷却水循环系统 • 冷却塔系统 • 新风处理系统
• 新风机、回风机、排风机提供了新风供应、回风和排风的动力,额定 功率一般从2kw到55kw 。
冷水机组 冷冻泵冷却泵冷却塔 空气处理机 新风机回风机排风机
中央空调能耗分析四
• 中央空调的设计往往是按照当地的气象资料(最高/低气温)和建筑 物的特点而设计的,并考虑到最大能量(冷/热量)需求,还要预留 10%至20%的设计余量,所以主机、水泵、风机都有很大的余量。
中央空调能耗分析二
• 冷冻水循环泵(简称:冷冻泵)主要提供冷冻水循环的动力,其输入 功率一般从11kw到132kw,传统的设计冷冻泵为定流量泵,输出功率 恒定不变。
• 冷却水循环泵(简称:冷却泵)主要提供冷却水循环的动力,其输入 输入功率一般从11kw到132kw,传统的设计冷却泵为定流量泵,输出 功率恒定不变。
• 由于季节的轮转和时间的变化,中央空调全年以最大功率运行的时间 很短,一般不足1% ,所以大量恒速电机存在很大的节能潜力。
• 没有安装中央集中监控系统的中央空调,因使用管理问题,往往会造 成更大的能源浪费。
• 用户的维护意识淡薄也是造成中央空调效率降低的原因之一。
中央空调的节能方案
目前技术上比较成熟的中央空调节能方案有: • 水泵、风机等动力设备变频运行以适应系统负荷变化; • 在满足工业要求或舒适性的前提下,采用变冷冻水温调节方式以适应系
• 根据现场调试结果和实际运行经验对计算结果进行修订以提高控制准 确性,人工智能在对空调区域的负荷预测以及控制系统寻优求解中起 到关键性作用。
EMC系统结构
(EMC 007)由制冷空调、工业控制和智能楼宇等专业领域集成,依据分布 式控制理论(DCS)组成了控 制网络
RAA系统组成
冷却水泵冷却塔
变频控制
• 可采用EMC 007实现。
能量=比热容r×流量Q×温差ΔT
转速n% 100 90 80 70 60 50
流量Q% 100 90 80 70 60 50
温差T% 100 111 125 143 167 200
扬程H% 100 81 64 49 36 25
频率f(Hz) 轴功率P%
50
100
45
72.9
• 冷却塔风机主要为冷却水降温提供风力,其输入输入功率一般从3kw 到15kw,传统的设计冷却塔风机为恒速风机,输出功率恒定不变。
中央空调能耗分析三
• 空气处理机(风机盘管、水冷风柜)是进行室内空气温度调节的末端 设备,其中风机提供了室内空气循环所需要的动力,通常采用恒速定 风量风机,额定功率从0.5kw到15kw ,但数量较多。