目录1.最优化的概念与分类 (2)2. 最优化问题的求解方法 (3)2.1线性规划求解 (3)2.1.1线性规划模型 (3)2.1.2线性规划求解方法 (3)2.1.3 线性规划算法未来研究方向 (3)2.2非线性规划求解 (4)2.2.1一维搜索 (4)2.2.2无约束法 (4)2.2.3约束法 (4)2.2.4凸规划 (5)2.2.5二次规划 (5)2.2.6非线性规划算法未来研究方向 (5)2.3组合规划求解方法 (5)2.3.1 整数规划 (5)2.3.2 网络流规划 (7)2.4多目标规划求解方法 (7)2.4.1 基于一个单目标问题的方法 (7)2.4.2 基于多个单目标问题的方法 (8)2.4.3多目标规划未来的研究方向 (8)2.5动态规划算法 (8)2.5.1 逆推解法 (8)2.5.2 顺推解法 (9)2.5.3 动态规划算法的优点及研究方向 (9)2.6 全局优化算法 (9)2.6.1 外逼近与割平面算法 (9)2.6.2 凹性割方法 (9)2.6.3 分支定界法 (9)2.6.4 全局优化的研究方向 (9)2.7随机规划 (9)2.7.1 期望值算法 (10)2.7.2 机会约束算法 (10)2.7.3 相关机会规划算法 (10)2.7.4 智能优化 (10)2.8 最优化软件介绍 (11)3 最优化算法在电力系统中的应用及发展趋势 (12)3.1 电力系统的安全经济调度问题 (12)3.1.1电力系统的安全经济调度问题的介绍 (12)3.1.2电力系统的安全经济调度问题优化算法的发展趋势 (12)2. 最优化问题的求解方法 最优化方法是近几十年形成的,它主要运用数学方法研究各种优化问题的优化途径及方案,为决策者提供科学决策的依据。
最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。
最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。
2.1 线性规划求解2.1.1线性规划模型线性规划模型的一般表达方式如下所示:112211221122min .. , 1,2,, 0 , 1, , 1, 0 , 1,2,, , n ni i in n i i i in n i j j z c x c x c x s t a x a x a x b i pa x a x a xb j i p m x j qq n x =++⋅⋅⋅+++==⋅⋅=⋅++≥=+⋅⋅⋅≥+⋅=⋅⋅⋅⋅⋅¤(2.1)其中,j x (1,2,,j n =⋅⋅⋅)为待定的决策变量,己知的系数ij a 组成的矩阵A 称为约束矩阵。
A 的列向量记为j A (1,2,,j n =⋅⋅⋅)。
A 的行向量记为T i A (1,2,,i m =⋅⋅⋅)。
目标函数记为1nj j j c x =∑,向量()12,,Tn C c c c =⋅⋅⋅称为价值向量,j c 称为价值系数;向量12(,)T m b b b b =⋅⋅⋅称为右端向量。
条件0j x ≥称为非负约束;0j x ¤表示变量可取正值、负值、或零值,称这样的变量为自由变量。
2.1.2线性规划求解方法 2.1.2.1 单纯形法求解线性规划问题的基本方法是单纯形法,是研究得最为透彻的一个方向,且至今仍是最好的应用最广泛的算法之一,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。
它的理论根据是:线性规划问题的可行域是 n 维向量空间R n 中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。
顶点所对应的可行解称为基本可行解。
单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。
因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。
如果问题无最优解也可用此法判别。
单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基可行解。
①若基本可行解不存在,即约束条件有矛盾,则问题无解。
①若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。
①按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。
①若迭代过程中发现问题的目标函数值无界,则终止迭代。
2.1.2.2 内点算法除了单纯形算法之外,现在经常使用的线性规划求解方法还包括内点算法,内点算法中的代表即Karmarkar 算法。
Karmarkar 算法运用了求解非线性规划问题的思想来解决线性规划问题。
这种算法是在把一般线性规划问题转化为Karmarkar 所特有的标准型,再利用一种求解这种标准型的算法最终求出最优解。
2.1.3 线性规划算法未来研究方向内点法是最新的设计,实际应用上它也可以与单纯形法相抗衡,不少商业化软件已经上市,前景甚佳。
目前线性规划的内点法也趋于成熟,这方面的研究者们目前大都致力于以线性规划作为特例的锥规划,以及如何利用线性规划松弛求解整数规划等方面的研究。
2.2非线性规划求解非线性规划问题的求解一般要比线性规划困难很多,而且目前尚没有适合于各类非线性问题的一般算法,每种算法都有自己的特定的使用范围。
有些情况下,为方便计算,也会把非线性规划问题近似为线性规划问题进行求解。
2.2.1一维搜索一维搜索是求解单变量非线性规划问题的方法。
这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化。
常用的一维最优化方法有黄金分割法、切线法和插值法。
2.2.1.1黄金分割法黄金分割法又称0.618法。
它适用于单峰函数。
其基本思想是:在初始寻查区间中设计一列点,通过逐次比较其函数值,逐步缩小寻查区间,以得出近似最优值点。
2.2.1.2切线法又称牛顿法。
它也是针对单峰函数的。
其基本思想是:在一个猜测点附近将目标函数的导函数线性化,用此线性函数的零点作为新的猜测点,逐步迭代去逼近最优点。
2.2.1.3插值法又称多项式逼近法。
其基本思想是用多项式(通常用二次或三次多项式)去拟合目标函数。
此外,还有斐波那契法、割线法、有理插值法、分批搜索法等。
2.2.2无约束法无约束法是求解无约束条件的非线性规划问题的方法,指寻求n元实函数f在整个n维向量空间Rn上的最优值点的方法。
这类方法的意义在于:虽然实用规划问题大多是有约束的,但许多约束最优化方法可将有约束问题转化为若干无约束问题来求解。
无约束最优化方法大多是逐次一维搜索的迭代算法。
这类迭代算法可分为两类。
一类需要用目标函数的导函数,称为解析法。
另一类不涉及导数,只用到函数值,称为直接法。
这些迭代算法的基本思想是:在一个近似点处选定一个有利搜索方向,沿这个方向进行一维寻查,得出新的近似点。
然后对新点施行同样手续,如此反复迭代,直到满足预定的精度要求为止。
根据搜索方向的取法不同,可以有各种算法。
属于解析型的算法有:①梯度法:又称最速下降法。
这是早期的解析法,收敛速度较慢。
②牛顿法:收敛速度快,但不稳定,计算也较困难。
③共轭梯度法:收敛较快,效果较好。
④变尺度法:这是一类效率较高的方法。
其中达维登-弗莱彻-鲍威尔变尺度法,简称DFP法,是最常用的方法。
属于直接型的算法有交替方向法(又称坐标轮换法)、模式搜索法、旋转方向法、鲍威尔共轭方向法和单纯形加速法等。
2.2.3约束法指前述一般非线性规划模型的求解方法。
常用的约束最优化方法有4种。
①拉格朗日乘子法:它是将原问题转化为求拉格朗日函数的驻点。
②制约函数法:又称系列无约束最小化方法,简称SUMT法。
它又分两类,一类叫惩罚函数法,或称外点法;另一类叫障碍函数法,或称内点法。
它们都是将原问题转化为一系列无约束问题来求解。
③可行方向法:这是一类通过逐次选取可行下降方向去逼近最优点的迭代算法。
如佐坦迪克法、弗兰克-沃尔夫法、投影梯度法和简约梯度法都属于此类算法。
④近似型算法:这类算法包括序贯线性规划法和序贯二次规划法。
前者将原问题化为一系列线性规划问题求解,后者将原问题化为一系列二次规划问题求解。
2.2.4凸规划这是一类特殊的非线性规划。
在前述非线性规划数学模型中,若f 是凸函数,诸i g 都是凹函数,诸j h都是一次函数,则称之为凸规划。
所谓f 是凸函数,是指f 有如下性质:它的定义域是凸集,且对于定义域中任意两点x 和y 及任一小于1的正数α,下式都成立:((1)x y)(1)(x)(y)f f f ααααα-+≤-+(2.1) 将上述不等式中的不等号反向即得凹函数的定义。
所谓凸集,是指具有如下性质的集合:连结集合中任意两点的直线段上的点全部属于该集合。
对于一般的非线性规划问题,局部解不一定是整体解。
但凸规划的局部解必为整体解,而且凸规划的可行集和最优解集都是凸集。
2.2.5二次规划二次规划是一类特殊的非线性规划。
它的目标函数是二次函数,约束条件是线性的。
求解二次规划的方法很多。
常用方法是拉格朗日法,较简便易行的是沃尔夫法。
它是依据库恩-塔克条件,在线性规划单纯形法的基础上加以修正而成的。
此外还有莱姆基法、毕尔法、凯勒法等。
2.2.6非线性规划算法未来研究方向就算法的发展来看,早期的方法以最速下降法和共轭梯度法为主,目前,序贯二次规划法是一类被用于广泛求解一般非线性规划的有效算法,同时也还有许多研究者在为改善这类算法作努力,其中包括序列线性规划算法以及内点算法等。
非线性规化算法通常使用线搜索策略选取步长,或通过求解信赖域子问题而得到新的迭代点。
这两个方面的研究非常基本,但仍有改善的空间。
对于大规模问题,如何设计子空间算法;以及如何有效求解一般非线性规划的全局最优,和一些来自于图像处理等领域的特殊的非光滑问题是目前非线性规划比较重要的研究问题。
总之,尽管在表面上看非线性规划已经有许许多多的研究,但由于非线性的存在,好的研究结果还将会不断出现,并且随着问题的不同而产生更加具有针对性的特殊算法。
2.3组合规划求解方法组合优化是20世纪60年代逐渐发展起来的一个交叉学科分支,它的研究对象是有限集合上的极值问题。
一个组合优化问题由三部分构成:已知条件的输入、可行解的描述、目标函数的定义。
经典的组合优化问题包括网络流、旅行商、排序、装箱、着色、覆盖、最短网络等等。