当前位置:文档之家› 光纤传感器基本原理

光纤传感器基本原理


调制信号
L
传感器的灵敏度主要与三个因素有关:微弯幅度、微 弯数目、微弯周期。其中微弯周期的影响最大,且有 一个与传感光纤有关的临界周期Lc。当光纤微弯周期 接近于临界周期时,光纤中光功率损耗急剧增加,即 光纤传感灵敏度显著增加。
第7章 光纤传感器基本原理
Fundamental of Optical Fiber Sensor
7.1 光纤传感器基本原理
1、光调制的概念 光调制就是将信息加到载到波光波上,使光载波 的某一参数随外加信号变化而变化,这些参数包 括光波的强度、位相、频率、偏振、波长等。承 载信息的调制光波在光纤中传输,再由光探测器 检测,然后解调出所需要的信息。
定量分析:反射镜面的移动方向是与光纤探头端面垂 直的,反射镜面在其背面距离d 处形成输入光纤的虚象, 因此,光强调制作用是与虚光纤和输出光纤的耦合相 联系的。 设两光纤皆为阶跃折射率光纤,芯径为2r,数值孔径为 N.A ,两光纤垂直距离为a.
N.A=sin
反射型光强外调制示意图
输入光纤 2r
a
因此最大检测范围:
d r T
光耦合系数近似计算
如果作线性近似,即将维体边缘与输 出光纤芯交界的弧线作为直线处理, 则可得到线性解,在线性近似下,可 求得交叠面积与光纤芯面积之比为:
r

r
模型

rቤተ መጻሕፍቲ ባይዱ

1
p
c
os11



r


1

r

s
in
c
os1
1


r

式中 为交叠面积的高,由 d 决定:
2dT a
假定反射镜面无光吸收,两光纤的光功率 耦合效率F ,即为交叠面积与光维底面积 之比:
F
r
2
2dT r
交叠面积
r
例 : 芯 径 2r=200mm , N.A.=0.5 的 阶 跃 光 纤 ,
调制信号 输入光纤的镜像
2d
输入光纤
输出光纤
d
a
输出光纤
反射型光强外调制示意图
输入光纤 2r
a
输入光纤的镜像
输入光纤
输出光纤
d
a
输出光纤
输入光纤的出射光与输出光纤纤芯的重叠部分
令:T tg(sin 1 N.A.)
输入光纤
N.A=sin
a
R
输出光纤
2r 2d
R r 2Td
返回
输入光纤的出射光与输出光纤纤芯的重叠部分
传感型 传光型
3、光纤传感器分类
1)强度调制型 2)相位调制型 3)频率调制型 4)波长调制型 5)偏振调制型
7.2 强度调制光纤传感器的基本原理
概念:待测物理量引起光纤中传输的光波强度 发生变化,通过检测光强的变化实现待测物理 量的测量。
S

Ii
测 信
光探 测器

调制区
iD
Io
1、强度调制传感器类型
a=100mm, 计算结果表明最大耦合效率Fmax=7.2% , 发生于d=320mm处。
Fmax=6.62%(计算结果)
F
r
2
2dT
d(mm)
简化处理
上面的分析作了很多简化处理:除了线性假设部分 ,还假定了①光纤为阶跃型光纤;②模谱是均匀一 致的,即功率密度在光维底面上是均匀的;③反射 面平行于光纤端面;④反射率为100%等。
2T
检测范围
当距离d a 时,两光纤的 耦合为零,2无T 反射光进入输
出光纤;
当d

a 2r 2T
时,两光纤耦合最
强,输出光强达最大值,此时
输入光纤的像发出的光维底面
积将输出光纤端面积全部遮盖,
pr2 是 一 个 常 数 , 光 维 底 面 积
为p(dT)2
检测位移的范围:
在 d a 和 a 2r 之间 2T 2T
输入光纤
令:T tg(sin 1 N.A.)
a
R
输出光纤
2r 2d
R r 2Td
当R r a,即d a 时进入输出光纤的光功率为零。 2T
输入光纤的出射光与输出光纤纤芯的重叠部分
输入光纤
R r 2Td
2r
2d
a
R
输出光纤 当R 3r a,即d a 2r 时进入输出光纤的光功率达到最大。
31 反射式强度调制 2 透射式强度调制 3 折射率强度调制 4 吸收系数强度调制 35 光模式强度调制
1、反射式强度调制
传感器的调制机理:
输入光纤将光源的光 射向被测物体表面, 再从被测面反射到另 一根输出光纤中,其 光强的大小随被测表 面与光纤间的距离d 而变化。
这是一种非功能型光纤传感器, 光纤本身只起传光作用。
2、光纤传感系统的基本构成
光源

测 信号检测

数 与处理
外界物理量与 进入调试区的
光相互作用
传输光纤
光电 探测

传调感制区区
光强、波长、频率、 相位、偏振态等发 生变化
光纤本身起敏感元件 的作用。光纤与被测 物理量相互作用时, 光纤自身的结构参量 或者光纤的传光特性 发生变化。
光纤不做为敏感器件, 只起传到光的作用
微弯损耗调制示意图
调制信号
光纤
L
微弯损耗调制示意图
调制信号
光纤
L
微湾损耗的机理
纤芯中的光向包层逸出的原因: 从几何光学来说是由于全反射条件的破坏造成 的; 从波导理论来说则是光纤的弯曲引起了各种传 导模式的耦合,则形成耦合模式被送入包层中 去产生辐射模。
调制信号
L
实用中的光纤微弯传感器如图所示,由多模光纤与 一个空间周期为L的梳状调制器构成,当外界压力、 位移或振动等使调制器变形时,将改变光纤弯曲部 分的模振幅,从而对光纤中传输光强度产生调制。
2、透射式强度调制
发射光纤与接收光纤对准,光强调制信号加在移动的遮光 板上,或直接移动接收光纤,使接收光纤只能收到发射光 纤发出的部分光,从而实现光强调制。待测物理量的变化 使接收光纤的轴线相对于发射光纤错开一段距离x。
位移、压力、

温度等



x
动光纤式光强调制模型
3、遮光型光强调制
将光强调制信号加在移
动的遮光板上。该办法 可以测量位移、压力、
发射光纤
温度等物理量,这些物
理量的变化使光强变化。
由于闸式要使两光纤距
离大一些,因此光损耗
较大,但它可固定两光 纤,因而使用可靠。
光闸
接收光纤
调 制 信 号
4、光模式光强度调制机理
当光纤发生弯曲时, 会引起光纤中的模式耦合, 其中有些导波模变成了辐射模,从而引起损耗, 这就是微弯损耗。 利用光在微弯光纤中强度的衰减原理,将光纤夹 在两块具周期性波纹的微弯变形器中,精确地把 微弯损耗与引起微弯的器件的位置及压力等物理 量联系起来制成各种光纤微弯传感器。
相关主题