当前位置:文档之家› 含光储系统的柔性直流配电网可靠性评估方法与制作流程

含光储系统的柔性直流配电网可靠性评估方法与制作流程

图片简介:本技术介绍了一种含光储系统的柔性直流配电网可靠性评估方法,它包括:建立IGBT的失效模式,选择RC热网络法建立IGBT的电热耦合模型并得到工作时的结温,最后采用Coffin Manson Arrhenius广延指数模型对IGBT 进行可靠性评估;选择部件计数法对直流配电网关键设备进行可靠性预测;通过冗余方法分析后分别对三种不同结构的MMC型换流器、ISOP型直流变压器以及光伏储能并网用的AC/DC变流器和DC/DC变流器进行可靠性建模;对直流配电系统可靠性评估;对交直流互联配电系统可靠性评估;解决了对含光储系统的交直流混合电网的可靠性评估采用现有技术的评估方法存在准确性较差等技术问题。

技术要求1.一种含光储系统的柔性直流配电网可靠性评估方法,它包括:步骤S1:建立IGBT的失效模式,选择RC热网络法建立IGBT的电热耦合模型并得到工作时的结温,最后采用Coffin-Manson-Arrhenius广延指数模型对IGBT进行可靠性评估;步骤S2:选择部件计数法对直流配电网关键设备进行可靠性预测;通过冗余方法分析后分别对三种不同结构的MMC型换流器、ISOP型直流变压器以及光伏储能并网用的AC/DC变流器和DC/DC变流器进行可靠性建模;步骤S3:根据步骤S1和S2建立的模型对直流配电系统可靠性评估;步骤S4、根据步骤S1和S2建立的模型对交直流互联配电系统进行可靠性评估。

2.根据权利要求1所述的一种含光储系统的柔性直流配电网可靠性评估方法,其特征在于:步骤S1具体包括:步骤S11:对IGBT和二极管进行损耗计算,包括通态损耗、开关损耗以及截止损耗;步骤S12:建立IGBT的电热耦合模型并得到工作时的结温;将IGBT内部温度的运算转化为由Foster模型等效的电流源、电阻和电容串联的一阶电路运算,IGBT和二极管的功率损耗分别作为对应的电流源输入,IGBT 和二极管的热阻热容作为对应的电阻电容,则IGBT和二极管芯片到壳之间的电压即为结温;步骤S13:采用Coffin-Manson-Arrhenius广延指数模型对IGBT进行可靠性评估,下式所示:式中,ΔTj是IGBT的结温差,α、β是模型参数,根据功率循环曲线通过函数拟合得到;Tm为平均结温。

Ea是激活能,数值为9.89×10-20J,kB是玻尔兹曼常数。

3.根据权利要求1所述的一种含光储系统的柔性直流配电网可靠性评估方法,其特征在于:步骤S2包括以下步骤:步骤S21:冗余方法分析,不同冗余设计可靠性计算公式如下:主动冗余:当单元系统的冗余设计为主动冗余时,n个子模块中至少有k个子模块投入运行可以保证单元系统的正常运行,假设子模块数量为n,当单元系统正常运行时需要k个子模块正常工作,子模块的故障率为λSM,可靠度可表示为:则单元系统的故障率为:式中Rs(t)为系统可靠度,i为流过系统的电流大小;被动冗余:当单元系统的冗余设计为被动冗余时,有n-k个备用子模块,它们服从尺度参数为λSM、形状参数为n-k+1的伽马分布,可靠度可表示为:则单元系统的故障率为:上式中Rs(t)为系统可靠度,i为流过系统的电流大小,k为可以保证单元系统的正常运行子模块数量;步骤S22:采用部件计数法对模块化多电平换流器MMC可靠性建模;混合MMC中当半桥子模块故障时采用冗余的全桥子模块进行替换工作,因此混合MMC的桥臂可靠性分为两种情况计算:(1)故障的半桥子模块可由冗余配置的半桥子模块进行替换工作,故障的全桥子模块可由冗余配置的全桥子模块进行替换工作,此时的可靠性为R1,计算公式如下:式中,iH为故障的半桥子模块数量,NOH为冗余配置的半桥子模块数量,NH为正常工作时需要的半桥子模块数量,RH为半桥子模块的可靠性,iF为故障的全桥子模块数量,NOF为冗余配置的全桥子模块数量,NF为正常工作时需要的全桥子模块数量,RF为全桥子模块的可靠性;(2)故障的半桥子模块数目超过了冗余配置的半桥子模块数目,超过的数目小于冗余配置的全桥子模块数量减去故障的全桥子模块数量,即故障的半桥子模块有一部分能够由未投入使用的冗余配置的全桥子模块进行替换工作,此时的可靠性为R2计算公式如下:式中,iH为故障的半桥子模块数量,NOH为冗余配置的半桥子模块数量,NH为正常工作时需要的半桥子模块数量,RH为半桥子模块的可靠性,iF为故障的全桥子模块数量,NOF为冗余配置的全桥子模块数量,NF为正常工作时需要的全桥子模块数量,RF为全桥子模块的可靠性;步骤S23:采用部件计数法对直流变压器可靠性建模;DAB模块分为逆变电路DC/AC、高频变压器T、整流电路AC/DC三个部分,其中逆变电路由4个IGBT、一个滤波电容以及电感L构成,整流电路由4个IGBT和一个滤波电容构成;则DAB模块的结构可靠性模型为逆变电路DC/AC、整流电路AC/DC、滤波电容C、电感L和高频变压器T串联的电路结构;步骤S24:采用部件计数法对AC/DC型变流器可靠性建模:AC/DC型变流器采用三相两电平AC/DC变流器,由IGBT、电容L、电感C以及隔离变压器T构成,其中IGBT 组成的全桥部分实现AC/DC的变换功能,电容L以及电感C进行滤波,隔离变压器T用来隔离交流电网与直流电网,提高安全性;三相两电平AC/DC变流器的结构可靠性模型为IGBT、电感C和电容L串联电路;步骤S25:采用部件计数法对DC/DC型变流器可靠性建模:Buck-Boost型DC/DC变流器由IGBT、电感L以及电容C组成;当电路进行充电操作时,即IGBT1工作,IGBT2关断,此时为Buck充电电路;当电路进行放电操作时,即IGBT1关断,IGBT2工作,此时为Boost升压电路;Buck/Boost型DC/DC变流器的结构可靠性模型为IGBT、电感L以及电容C的串联结构。

4.根据权利要求2所述的一种含光储系统的柔性直流配电网可靠性评估方法,其特征在于:IGBT的通态损耗Pcond_t与流过IGBT的电流ic、集射极通态压降Vce和占空比δ(t)有关,公式为:Pcond_t=ic·Vce·δ(t)IGBT的通态压降Vce与电流ic、阈值电压Vce0、导通电阻Rch和结温Tj有关,公式为:式中阈值压降导通电阻与结温Tj相关,根据IGBT手册提供的输出特性曲线,使用线性插值法近似计算相应结温下的参数:式中,分别为对应温度T1、T2的阈值压降;二极管的通态损耗与IGBT的通态损耗计算相同,即:Pcond_D=ic·VF[1-δ(t)]二极管Pon的阈值压降VF表示为:式中表示与结温Tj相关的阈值压降VF的初始值,为与结温Tj相关的二极管导通电阻;IGBT的开关损耗与通态损耗的计算公式为:Psw_t=Pon+Poff式中,Pon_t与Poff_t分别表示IGBT的开通与关断的损耗,fsw表示开关频率,Esw_on与Esw_off表示额定条件下IGBT的开通损耗与关断损耗,与表示门极电阻Rg对IGBT开通损耗与关断损耗的影响系数,Esw_on、Esw_off、通过IGBT手册的相关曲线采用线性插值法近似计算;Udc表示直流侧电压;UN和IN表示IGBT手册中进行开通损耗与关断损耗测试的测试电压和电流;表示温度系数,二极管的关断损耗,计算方法与IGBT的计算方法相同,公式为:式中Esw_rr表示额定条件下二极管的关断损耗,表示门极电阻Rg对二极管关断损耗的影响系数,Esw_rr、通过IGBT手册的相关曲线采用线性插值法近似计算;表示温度系数,Udc表示直流侧电压;UN和IN表示IGBT 手册中进行开通损耗与关断损耗测试的测试电压和电流。

5.根据权利要求1所述的一种含光储系统的柔性直流配电网可靠性评估方法,其特征在于:步骤S3所述对直流配电系统可靠性评估的方法为:步骤S31:对直流配电网进行可靠性评估:A.将配电网系统内的元件和节点进行编号,并建立Excle表格,在表格内输入对应元件的故障率与修复时间、负荷节点的容量、以及光伏和储能装置的容量和发电时间,在Matlab中读取表格;B.根据节点编号形成表示拓扑结构的邻接矩阵LA,邻接矩阵为布尔矩阵,矩阵中i行j列和j列i行的数值为1表示节点i和节点j相邻连接,为0表示节点i和节点j不连接;根据邻接矩阵与连通矩阵的关系对邻接矩阵进行n-1次自乘,n为节点数,形成连通矩阵LAC,连通矩阵中i行j列和j列i行的数值为1表示节点i和节点j连通,为0表示节点i和节点j不连通;C.产生N个随机数,N为元件数,由蒙特卡洛原理得到N个元件的无故障工作时间并选择时间最短的元件作为故障元件,记录故障元件的编号以及故障发生的时间,生成对应元件的修复时间;D.将邻接矩阵中故障元件的相应节点号改为0,并生成连通矩阵LACF;根据连通矩阵LACF与LAC的变化判定当前系统状态;E.根据统计得到的负荷点的故障次数以及故障持续时间,以及可靠性指标的计算公式进行负荷点可靠性指标以及系统的可靠性指标的计算。

6.根据权利要求5所述的一种含光储系统的柔性直流配电网可靠性评估方法,其特征在于:系统状态分为如下三类:1)系统内负荷节点不与其它节点连通,该负荷点停电,负荷点的停电时间为故障元件的修复时间;2)系统内发生孤岛运行,此时根据模拟时间判断光伏电源的供电情况,如果光伏电源供电,根据光伏电源供电时间和容量以及储能系统供电时间和容量判断孤岛内负荷点是否停电以及停电时间;3)有元件故障但故障元件切除后不影响系统内负荷节点的整体连通性,此时负荷点是否停电需进一步判断;首先根据MMC换流器与电源点以及直流母线的连接状态判断MMC换流器是否为系统内提供功率;然后判断MMC换流器是否为与接在同一母线的负荷点提供功率;在交直流互联系统中,若MMC换流器为直流母线侧提供功率,则不能向接在同一交流母线的交流负荷提供功率;最后将MMC换流器能够向直流母线侧提供的功率以及通过直流母线侧供电的所有负荷点的功率进行比较,当提供的功率大于负荷点需要的功率时,负荷点不停电,当提供的功率小于负荷点需要的功率时,根据负荷点的重要程度以及功率大小进行负荷切除,切除的负荷的停电时间即为故障元件的修复时间。

7.根据权利要求1所述的一种含光储系统的柔性直流配电网可靠性评估方法,其特征在于:步骤S4包括以下步骤:步骤S41:不考虑交流侧部分仅对直流配电网部分进行计算分析;步骤S42:不考虑直流侧部分,即仅对交流配电网部分进行计算分析;步骤S43:考虑交直流系统互联,但不考虑直流负荷及光储部分,当交流侧负荷点停电由直流侧进行转供;步骤S44:考虑交直流系统互联,加入直流负荷,光储部分未并网,交流侧负荷点停电不由直流侧进行转供;步骤S45:考虑交直流系统互联,加入直流负荷,光储部分未并网,交流侧负荷点停电可由直流侧进行转供;该场景计算直流侧转供部分对系统可靠性的改善;步骤S46:考虑交直流系统互联,加入直流负荷,光储部分并网,交流侧负荷点停电可由直流侧进行转供;该场景计算光储并网对系统可靠性的改善作用。

相关主题