污水处理厂平面布置及高程布置黎松强编嘉应学院环境工程与监测专业教研室2001年6月29日一污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5—8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
化验室应远离机器间和污泥干化场,以保证良好的工作条件。
办公室、化验室等均应与处理构筑物保持适当距离,并应位于处理构筑物的夏季主风向的上风向处。
操作工人的值班室应尽量布置在使工人能够便于观察各处理构筑物运行情况的位置。
此外,处理厂内的道路应合理布置以方便运输;并应大力植树绿化以改善卫生条件。
应当指出:在工艺设计计算时,就应考虑它和平面布置的关系,而在进行平面布置时,也可根据情况调整构筑物的数目,修改工艺设计。
总平面布置图可根据污水厂的规模采用1∶200~1∶1000比例尺的地形图绘制,常用的比例尺为l:500。
图1为某甲市污水处理厂总平面布置图、主要处理构筑物有:机械除污物格栅井、曝气沉砂池、初次沉淀池与二次沉淀池(均设斜板)、鼓风式深水中层曝气池、消化池等及若干辅助建筑物。
该厂平面布置特点为:流线清楚,布置紧凑。
鼓风机房和回流污泥泵房位于暖气池和二次沉淀池一侧,节约了管道与动力费用,便于操作管理。
污泥消化系统构筑物靠近四氯化碳制造厂(即在处理厂西侧),使消化气、蒸气输送管较短。
节约了基建投资。
办公室。
生活住房与处理构筑物、鼓风机房、泵房、消化池等保持一定距离,卫生条件与工作条件均较好。
在管线布置上,尽量一管多用,如超越管、处理水出厂管都借道雨水管泄入附近水体,而剩余污泥、污泥水、各构筑物放空管等,又都与厂内污水管合并流人泵房集水井。
但因受用地限制(厂东西两恻均为河浜),远期发展余地尚感不足。
图2为乙市污水厂的平面布置图,泵站设于厂外。
主要构筑物有:格栅、曝气沉砂池、初次沉淀池、曝气池、二次沉淀池及回流污泥泵房等一些辅助建筑物。
湿污泥池设于厂外便于农民运输之处。
该厂平面布置的特点是:布置整齐、紧凑。
两期工程各自成系统,对设计与运行相互干扰较少。
办公室等建筑物均位于常年主风向的上风向,且与处理构筑物有一定距离,卫生、工作条件较好。
在污水流人初次沉淀池、曝气池与二次沉淀池时,先后经三次计量,为分析构筑物的运行情况创造了条件。
利用构筑物本身的管渠设立超越管线,既节省了管道,运行又较灵活。
第二期工程预留地设在一期工程与厂前区之间,若二期工程改用别的工艺流程或另选池型时,在平面布置上将受一定限制。
泵站与湿污泥池均设于厂外,管理不甚方便。
此外,三次计量增加了水头损失。
二污水处理厂的高程布置污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。
计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。
为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。
水头损失包括:(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失构筑物名称水头损失(cm)构筑物名称水头损失(cm)格栅10~25生物滤池(工作高度为2m时):沉砂池10~25沉淀池:平流竖流辐流20~40 1)装有旋转式布水器270~280 40~50 2)装有固定喷洒布水器450~475 50~60 混合池或接触池10~30双层沉淀池10~20 污泥干化场200~350 曝气池:污水潜流入池25~50污水跌水入池50~150(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。
但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。
还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。
污泥干化场、污泥浓缩池(湿污泥池),消化池等构筑物高程的决定,应注意它们的污泥水能自动排人污水人流干管或其他构筑物的可能性。
在绘制总平面图的同时,应绘制污水与污泥的纵断面图或工艺流程图。
绘制纵断面图时采用的比例尺:横向与总平面图同,纵向为1∶50—1∶100。
现以图2所示的乙市污水处理厂为例说明高程计算过程。
该厂初次沉淀池和二次沉淀池均为方形,周边均匀出水,曝气池为四座方形池,表面机械曝气器充氧,完全混合型,也可按推流式吸附再生法运行。
污水在入初沉池、曝气池和二沉池之前;分别设立了薄壁计量堰(2F 、3F 为矩形堰,堰宽0.7m ,1F 为梯形堰,底宽0.5m )。
该厂设计流量如下:近期avg Q =174L/s 远期avg Q =348L/sm ax Q =300L/s m a xQ =600L/s 回流污泥量以污水量的100%计算。
各构筑物间连接管渠的水力计算见表2。
处理后的污水排人农田灌溉渠道以供农田灌溉,农田不需水时排人某江。
由于某江水位远低于渠道水位,故构筑物高程受灌溉渠水位控制,计算时,以灌溉渠水位作为起点,逆流程向上推算各水面标高。
考虑到二次沉淀池挖土太深时不利于施工,故排水总管的管底标高与灌溉渠中的设计水位平接(跌水0.8m )。
污水处理厂的设计地面高程为50.00m 。
高程计算中,沟管的沿程水头损失按表2所定的坡度计算,局部水头损失按流速水头的倍数计算。
堰上水头按有关堰流公式计算,沉淀池、曝气池集水槽系底,且为均匀集水,自由跌水出流,故按下列公式计算:表2 连接管、渠的水力计算表B =4.09.0Q (1) 0h =1.25B (2)式中Q ——集水槽设计流量,为确保安全,常对设计流量再乘以1.2~1.5的安全系数(s m /3);B ——集水槽宽(m );0h ——集水槽起端水深(m )。
高程计算:高程(m)灌溉渠道(点8)水位 49.25 排水总管(点7)水位跌水0.8m 50.05 窨井6后水位沿程损失=0.001×390 50.44 窨井6前水位管顶平接,两端水位差0.05m 50.49 二次沉淀池出水井水位沿程损失=0.0035×100=0.35m 50.84 二次沉淀池出水总渠起端水位沿程损失=0.35-0.25=0.10 m 50.94 二次沉淀池中水位集水槽起端水深 =0.38m自由跌落 =0.10m堰上水头(计算或查表) =0.02m合计 0.50m 51.44 堰F 3后水位沿程损失=0.002810=0.03m局部损失=g294.00.62=0.28m 合计 0.31m 51.75 堰F 3前水位堰上水头=0.26m自由跌落=0.15m合计0.41m 52.16 曝气池出水总渠起端水位沿程损失=0.64-0.42=0.22m 52.38 曝气池中水位集水槽中水位=0.26m 52.64 堰F 2前水位堰上水头=0.38m自由跌落=0.20m合计 0.58m 53.22点3水位沿程损失=0.62-0.54=0.08m局都损失=5.85×g269.02=0.14m 合计 0.22m 53.44 初次沉淀池出水井(点2)水位沿程损失=0.0024×27=0.07m局部损失=2.46×g207.12=0.15m 合计 0.22m 53.66初次沉淀池中水位出水总渠沿程损失=0.35-0.25=0.10m集水槽起端水深 =0.44m自由跌落 =0.10m堰上水头=0.03m合计 0.67m 54.33 堰F 1后水位沿程损失=0.0028×11=0.04m局部损失=g294.00.62=0.28m 合计 0.32m 54.65 堰F 1前水位堰上水头=0.30m自由跌落=0.15m合计 0.45m 55.10 沉砂池起端水位沿程损失=0.48-0.46=0.02m沉砂池出口局部损失=0.05m沉砂池中水头损失=0.20m合计 0.27m 55.37格栅前(A 点)水位过栅水头损失0.15m 55.52m 总水头损失6.27m上述计算中,沉淀池集水槽中的水头损失由堰上水头、自由跌落和槽起端水深三部分组成,见图3。
计算结果表明:终点泵站应将污水提升至标高55.52m 处才能满足流程的水力要求。
根据计算结果绘制了流程图,见图4。