2016高二物理人教版选修3-5导学案:反冲运动 火箭[目标定位] 1.了解反冲运动的概念及反冲运动的一些应用.2.理解反冲运动的原理,能够应用动量守恒定律解决反冲运动问题.3.了解火箭的工作原理及决定火箭最终速度大小的因素.一、反冲 [问题设计]把一个气球吹起来,用手捏住气球的吹气口,然后突然放开,让气体喷出,简述观察到的现象. 答案 气体向后运动,气球向前运动. [要点提炼]1.定义:如果一个静止的物体在力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动.这个现象叫做反冲. 2.反冲运动的特点及遵循的规律(1)特点:物体间作用力与反作用力产生的效果.(2)遵循的规律:反冲运动是力作用的结果,虽然有时系统所受的合外力不为零,但由于系统力远大于外力,所以可以认为系统的总动量是守恒的. 3.注意的问题(1)速度的反向性:原来静止的整体,抛出部分具有速度时,剩余部分反冲速度的方向与抛出部分相反.(2)速度的相对性:一般指对地速度. 二、火箭 [问题设计]设火箭发射前的总质量是M ,燃料燃尽后的质量为m ,火箭燃气的喷射速度为v ,试求燃料燃尽后火箭飞行的最大速度v ′.答案 在火箭发射过程中,由于力远大于外力,所以可认为动量守恒.取火箭的速度方向为正方向,发射前火箭的总动量为0,发射后的总动量为m v ′-(M -m )v 则由动量守恒定律得m v ′-(M -m )v =0所以v ′=M -m mv =⎝⎛⎭⎫M m -1v[要点提炼]1.工作原理:利用反冲运动,火箭燃料燃烧产生的高温、高压燃气从尾部喷管迅速喷出,使火箭获得向前的速度.2.火箭燃料燃尽时火箭获得的最大速度由喷气速度和质量比(火箭起飞时的质量与火箭除燃料外的箭体质量之比)两个因素决定.3.火箭喷气属于反冲类问题,是动量守恒定律的重要应用.在火箭运动的过程中,随着燃料的消耗,火箭本身的质量不断减小,对于这一类的问题,可选取火箭本身和在相互作用的时间喷出的全部气体为研究对象,取相互作用的整个过程为研究过程,运用动量守恒的观点解决问题. 三、“人船模型”探究 [问题设计]如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?图1答案 设任一时刻人与船相对地面的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒,所以有 m v 1=M v 2而整个过程中的平均速度大小为v 1、v 2,则有 m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2. 且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=m m +M L .[要点提炼]1.两物体满足动量守恒定律:m 1v 1-m 2v 2=0.2.运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1.3.应用此关系时要注意一个问题:即公式中v 、v 和x 一般都是相对地面而言的.一、反冲运动的应用例1一个静止的质量为M的不稳定原子核,当它放射出质量为m、速度为v的粒子后,原子核剩余部分的速度为()A.-v B.-m vM-mC.-m vm-M D.-m vM解析以原子核为一系统,放射过程中由动量守恒定律(M-m)v′+m v=0得v′=-m vM-m.答案 B例2如图2所示,水平地面上放置一门大炮,炮身质量为M,炮筒与水平方向成θ角,今相对地面以速度v发射一炮弹,若炮弹质量为m,求炮身的后退速度.图2解析炮弹和炮身组成的系统在水平方向动量守恒,以炮弹的水平速度方向为正方向,由动量守恒定律可知:0=m v cos θ-M v′解得v′=m v cos θM,方向与炮弹的水平速度方向相反.答案m v cos θM,方向与炮弹的水平速度方向相反二、火箭问题的分析例3一火箭喷气发动机每次喷出m=200 g的气体,气体离开发动机时速度v=1 000 m/s,设火箭质量M=300 kg,发动机每秒喷气20次,求:(1)当第3次气体喷出后,火箭的速度多大?(2)运动第1 s末,火箭的速度多大?解析由于每次喷气速度都一样,可选整体为研究对象,运用动量守恒定律来求解.(1)设喷出3次气体后火箭的速度为v3,以火箭和喷出的3次气体为研究对象,根据动量守恒定律可得(M-3m)v3-3m v=0解得v3=3m vM-3m≈2 m/s(2)以火箭和喷出的20次气体为研究对象,根据动量守恒定律可得(M-20m)v20-20m v=0得v20=20m vM-20m≈13.5 m/s答案(1)2 m/s(2)13.5 m/s三、“人船模型”的应用例4有一只小船停在静水中,船上一人从船头走到船尾.如果人的质量m=60 kg,船的质量M=120 kg,船长为l=3 m,则船在水中移动的距离是多少?水的阻力不计.解析人在船上走时,由于人、船系统所受合力为零,总动量守恒,因此系统的平均动量也守恒,如图所示.设人从船头到船尾的时间为t,在这段时间里船后退的距离为x,人相对地面运动距离为l—x,选船后退方向为正方向,由动量守恒有:Mxt-ml-xt=0所以x=mM+ml=60120+60×3 m=1 m.答案 1 m反冲运动火箭⎩⎪⎨⎪⎧反冲运动⎩⎪⎨⎪⎧定义原理:动量守恒定律应用火箭⎩⎪⎨⎪⎧工作原理主要用途1.(反冲运动的认识)下列属于反冲运动的是()A.喷气式飞机的运动B.直升机的运动C .火箭的运动D .反击式水轮机的运动 答案 ACD解析 反冲运动是一个物体分裂成两部分,两部分向相反方向的运动,故直升机的运动不是反冲运动.2.(反冲运动的应用)假设一个人静止于完全光滑的水平冰面上,现欲离开冰面,下列方法中可行的是( ) A .向后踢腿 B .手臂向后甩 C .在冰面上滚动 D .脱下外衣水平抛出 答案 D解析 向后踢腿和手臂向后甩,都是人体间的力,不会使人前进.在光滑冰面上由于不存在摩擦力,故无法完成滚动动作.而抛出衣服能获得反方向的速度,故可滑离冰面.3.(火箭问题的分析)静止的实验火箭,总质量为M ,当它以对地速度v 0喷出质量为Δm 的高温气体后,火箭的速度为( ) A.Δm v 0M -Δm B .-Δm v 0M -Δm C.Δm v 0M D .-Δm v 0M答案 B解析 由动量守恒定律得Δm v 0+(M -Δm )v =0.火箭的速度为v =-Δm v 0M -Δm.选项B 正确.4. (“人船模型”的应用)如图3所示,载人气球原来静止在空中,与地面距离为h ,已知人的质量为m ,气球的质量(不含人的质量)为M .若人要沿轻绳梯返回地面,则绳梯的长度至少为多长?图3答案M +mMh 解析 人与气球组成的系统动量守恒.设人到地面时,气球上升高度为H ,如图所示.由动量守恒定律得:MH =mh ,解得:H =mMh .所以绳梯的长度至少为L =H +h =M +mMh .题组一 反冲运动的理解和应用1.下列哪些措施有利于增加喷气式飞机的飞行速度( ) A .使喷出的气体速度增大 B .使喷出的气体温度更高 C .使喷出的气体质量更大 D .使喷出的气体密度更小 答案 AC2.关于反冲运动的说法中,正确的是( )A .抛出物m 1的质量要小于剩下的质量m 2才能获得反冲B .若抛出质量m 1大于剩下的质量m 2,则m 2的反冲力大于m 1所受的力C .反冲运动中,牛顿第三定律适用,但牛顿第二定律不适用D .对抛出部分和剩余部分都适用于牛顿第二定律 答案 D解析 反冲运动是指由于系统的一部分物体向某一方向运动,而使另一部分向相反方向运动.定义中并没有确定两部分物体之间的质量关系,故选项A 错误.在反冲运动中,两部分之间的作用力是一对作用力与反作用力,由牛顿第三定律可知,它们大小相等、方向相反,故选项B 错误.在反冲运动中一部分受到的另一部分的作用力产生了该部分的加速度,使该部分的速度逐渐增大,在此过程中对每一部分牛顿第二定律都成立,故选项C 错误,选项D 正确.3.小车上装有一桶水,静止在光滑水平地面上,如图1所示,桶的前、后、底及侧面各装有一个阀门,分别为S 1、S 2、S 3、S 4(图中未画出),要使小车向前运动,可采用的方法是( )图1A.打开阀门S1B.打开阀门S2C.打开阀门S3D.打开阀门S4答案 B解析据水和车组成的系统动量守恒,原来系统动量为0,由0=m水v水+m车v车知,车的运动方向与水的运动方向相反,故水应向后喷出.4.如图2所示,船静止在平静的水面上,船前舱有一抽水机把前舱的水均匀的抽往后舱,不计水的阻力,下列说法中正确的是()图2A.若前后舱是分开的,则前舱将向后加速运动B.若前后舱是分开的,则前舱将向前加速运动C.若前后舱不分开,则船将向后加速运动D.若前后舱不分开,则船将向前加速运动答案 B解析前后舱分开时,前舱和抽出的水相互作用,靠反冲作用前舱向前加速运动,若不分开,前后舱和水是一个整体,则船不动.题组二火箭问题的分析5.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是()A.燃料燃烧推动空气,空气反作用力推动火箭B.火箭发动机将燃料燃烧产生的气体向后喷出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭答案 B解析火箭的工作原理是利用反冲运动,火箭燃料燃烧产生的高温、高压燃气从尾部喷管迅速喷出时,使火箭获得反冲速度,故正确选项为B.6.将静置在地面上、质量为M (含燃料)的火箭模型点火升空,在极短时间以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( ) A.m M v 0 B.M m v 0 C.M M -m v 0 D.m M -m v 0 答案 D解析 火箭模型在极短时间点火,设火箭模型获得速度为v ,据动量守恒定律有0=(M -m )v -m v 0,得v =mM -m v 0,故选D.7.竖直发射的火箭质量为6×103 kg.已知每秒钟喷出气体的质量为200 kg.若要使火箭获得20.2 m/s 2的向上加速度,则喷出气体的速度大小应为( ) A .700 m/s B .800 m/s C .900 m/s D .1 000 m/s 答案 C解析 火箭和喷出的气体动量守恒,即每秒喷出气体的动量等于火箭每秒增加的动量,即m 气v 气=m 箭v 箭,由动量定理得火箭获得的动力F =m 箭v 箭t =m 气v 气t =200v 气,又F -m 箭g =m 箭a ,得v 气≈900m/s.题组三 “人船模型”的应用8.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,则( ) A .人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比 B .人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关 答案 ABC解析 由动量守恒定律可知,A 、B 、C 正确.9.如图3所示,一辆小车静置于光滑水平面上,车的左端固定有一个水平弹簧枪,车的右端有一个网兜.若从弹簧枪中发射出一粒弹丸,弹丸恰好能落入网兜中.从弹簧枪发射弹丸以后,下列说法中正确的是( )图3A .小车向左运动一段距离然后停下B.小车先向左运动又向右运动,最后回到原位置停下C.小车一直向左运动下去D.小车先向左运动,后向右运动,最后保持向右匀速运动答案 A10.一条约为180 kg的小船漂浮在静水中,当人从船尾走向船头时,小船也发生了移动,忽略水的阻力,以下是某同学利用有关物理知识分析人与船相互作用过程时所画出的草图(如图所示),图中下面部分为人走到船头时的情景.请用有关物理知识判断下列图中所描述物理情景正确的是()答案 B解析人和船组成的系统动量守恒,总动量为零,人向前走时,船将向后退,B正确.11.一个人在地面上立定跳远的最好成绩是x,假设他站在船头要跳上距离在L远处的平台上,水对船的阻力不计,如图4所示.则()图4A.只要L<x,他一定能跳上平台B.只要L<x,他有可能跳上平台C.只要L=x,他一定能跳上平台D.只要L=x,他有可能跳上平台答案 B解析若立定跳远时,人离地时速度为v,如题图从船上起跳时,人离船时速度为v′.船的速度为v船,由能量守恒E=12m v2,E=12m v′2+12m v2船,所以v′<v,人跳出的距离变小,所以B正确.12. 如图5所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h,今有一质量为m的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是()图5A.mh M +mB.Mh M +mC.mh cot αM +mD.Mh cot αM +m 答案 C解析 此题属“人船模型”问题,m 与M 组成的系统在水平方向上动量守恒,设m 在水平方向上对地位移为x 1,M 在水平方向对地位移为x 2,因此0=mx 1-Mx 2.① 且x 1+x 2=h cot α.②由①②可得x 2=mh cot αM +m,故选C.13.平板车停在水平光滑的轨道上,平板车上有一人从固定在车上的货箱边沿水平方向顺着轨道方向跳出,落在平板车地板上的A 点,距货箱水平距离为l =4 m ,如图6所示.人的质量为m ,车连同货箱的质量为M =4m ,货箱高度为h =1.25 m .求车在人跳出后到落到地板前的反冲速度为多大(g 取10 m/s 2).图6答案 1.6 m/s解析 人从货箱边跳离的过程,系统(人、车和货箱)水平方向动量守恒,设人的水平速度是v 1,车的反冲速度是v 2,取向右为正方向,则m v 1-M v 2=0,解得v 2=14v 1人跳离货箱后做平抛运动,车以v 2做匀速运动,运动时间为t =2h g= 2×1.2510s =0.5 s .由图可知,在这段时间人的水平位移x 1和车的位移x 2分别为 x 1=v 1t ,x 2=v 2t ,x 1+x 2=l 即v 1t +v 2t =l ,则v 2=l 5t =45×0.5m/s =1.6 m/s。