当前位置:文档之家› 焦化废水处理技术及其发展文献综述

焦化废水处理技术及其发展文献综述

焦化废水处理技术及其发展文献综述前言:焦化废水的定义是焦化厂在炼焦过程中各环节所产生的废水的统称,废水的主要来源有三个,分别是在煤干馏时期、荒煤气的回收和净化阶段以及化学产品的回收阶段。

废水中含有大量的氮、磷、硫等无机盐污染物,另外也含有大量的不可降解的有机物如酚类、油类、联苯类、吡啶、吲哚和喹啉等。

这些污染物的超标排放会对水产业,农业以及人类的生活饮水带来巨大危害,因此,如何治理焦化废水成为焦化行业所面临的一个重要的问题。

本文就目前各种焦化废水的治理方法做一个综述,介绍一下近年来焦化废水治理技术的发展。

主题:焦化废水处理技术主要包括物理化学法、生物化学法和化学处理法,由于焦化废水中所含的污染物的种类多,污染量大,导致目前大多数技术只是出于实验室的中试阶段,并未大量投入到工业生产中。

1物理化学处理法物理化学法主要包括吸附法和混凝法和其他的一些新的方法。

吸附法吸附法处理废水的原理是利用了吸附剂的多孔特性,吸附废水中的一种或多种物质,将污染物从废水中除去,常用的吸附剂主要有活性炭[1]、硅藻土[2]和粉煤灰[3]等。

活性炭[4]是一种多功能材料由于活性炭具有表面积大、疏松多孔[5]的特性,这使得它成为最好的吸附剂[6]。

而硅藻土由于具有独特的壳体结构、比表面积大、孔隙度高等优点,也被广泛应用于废水的处理上面。

至于粉煤灰,则是由燃煤锅炉及火力发电厂所排放出的工业废渣,它的成分因来源不同而各不相同,作为一种新型的废水处理剂,可以很好的去除废水中的各种阴、阳离子及有机污染物[7]。

混凝法混凝法是通过向废水中加入混凝剂[8],通过混凝剂的水解作用产生氢氧化物胶体和水合配离子,这两种物质能使水中的污染物发生凝聚作用,产生沉淀,然后被除去。

常见的混凝剂有铝盐、铁盐[9]等,还有一种新型的碱式稀土混凝剂[10],通过与其他传统的混凝剂如聚合硫酸铁相比较,碱式稀土混凝剂有着更为理想的效果,相信会慢慢的得到更深入的推广[11]。

对于以上两种物理化学的焦化废水处理方法来说,都能有效去除废水中的污染物,对于混凝法来讲,它的优势在于操作费用低,并且可以进行间歇操作和连续操作,并且能降低废水的COD和色度;对于吸附法来讲,处理成本较高,并且吸收剂的再生比较困难,对于高浓度的废水来说,处理效果不好[12]。

烟道气处理焦化废水这是一种心形的废水处理方法,是由江苏淮钢集团在焦化剩余氨水处理中所使用的一种方法[13]。

它将水中的污染物(特别是有机污染物)通过气固分离的方式除去,即将废水气化而污染物固体则被剩下排出。

这种方法实现了废水的零排放,并且烟道气的排放也达标,被称作“以废治废”,具有投资少,效果好的特点。

萃取法萃取法的原理是利用废水中的污染物质在萃取剂中溶解度的不同来分离出污染物质[14]。

萃取法的主要对象是污染物中的酚类化合物,由于萃取剂对络合物的分配系数太低,并且二次污染较严重,在这种背景下,新近提出了膜分离萃取法[15]和络合离心萃取法[16],效果更好。

2化学处理法焚烧法这是一种早期处理焦化废水的方法,比较古老,方法是将将废水以雾状喷入高温燃烧炉内,使废水完全气化,使废水中的有机物分解为无污染的CO 2和H2O 以及无机废渣,达到处理的目的。

焚烧法的优点是处理效率高,没有二次污染,缺点则是处理的费用较高,不经济[17]。

臭氧法臭氧法是利用臭氧的强氧化能力将焦化废水中的污染物质氧化为无害物质,由于臭氧能和大多数的有机物和微生物发生作用[18],此方法能够得到较为纯净的物质。

并且由于臭氧的量一般都会过量,过量的臭氧会在水中分解氧气,不会对水造成二次污染[19]。

但是臭氧法同样存在着有一些缺点,比如投资高、对电力的消耗过大,在进行臭氧处理时对设备要求较高,会容易发生泄漏,从而对环境造成影响[20]。

另外臭氧法主要适用于对焦化废水的深度处理中。

Fenton试剂法Fenton试剂法利用的也是它的氧化性,其中Fenton试剂的组成是H2O2和二价的Fe离子[21]。

其分解产生的羟基对废水中的难生物降解的物质能起到很好的氧化作用。

它的作用机理是自由基理论。

由于Fenton试剂反应迅速,在很短的时间内就能降低焦化废水中的COD含量[22]。

并且一个合适的配比对脱除结果也显得尤为重要。

这种方法的优点是既不需要特定的反应系统,它的产物也不会产生二次污染。

并且由于三价的Fe离子能与OH根离子产生沉淀,从另一方面也会对污染物有一定的脱除作用[23]。

近年来,为了有更好的脱除效果,Fenton试剂也被用来和其他的试剂一块加入到废水中去[24]。

例如Fenton试剂法和吸附法[25]联合使用,Fenton试剂法和混凝法[26]的联合使用,Fenton试剂法和超声[27]的联合使用等。

这些方法的联合产生了更好的脱除效果。

光催化氧化法光催化氧化法是近几年来快速发展的一项技术,经过大量的实验证明,光催化技术能够分解掉焦化废水中几乎所有的有机污染物,将它们氧化为H2O、CO2和无机离子[28]。

光催化氧化法有以下特点:·OH是在光催化氧化中起到决定作用的活性氧化物质,氧化能力强,也正因为它的存在,使得光催化技术有广大的适用范围,对绝大多数的有机污染物有着分解作用[29]。

纳米二氧化钛[30]是主要的光催化剂,由于它具有催化活性高、性质稳定等特点被大量应用于光催化领域中。

但由于直接将二氧化钛投入到焦化废水中的话处理效果较差,因此,选择合适的催化剂的载体变得至关重要,例如利用膨润土作为二氧化钛的载体的主体,利用加碳焙烧法制备二氧化钛的载体,再利用紫外线照射焦化废水就能有效解决这个问题。

与化学不同的是,光催化氧化法在其反应过程中没有加入其他的化学物质,不会对处理的水体造成二次污染,并且易于控制反应的开始与结束。

除此之外,能耗低是光催化氧化法的另一个优势,并且可以利用太阳能作为光源,反应条件温和,是一种很高效的焦化废水处理技术[31]。

但是光催化技术仍然存在着一定的技术难题,比如解决光催化剂与废水的即时分离问题,制约着光催化技术的发展[32]。

湿式催化氧化技术湿式催化氧化技术是一种治理高浓度焦化废水的新型处理技术,它起源于上世纪的八十年代,是在一定的温度和压力下,经过催化剂的催化作用,液相中利用空气或者氧气作为氧化剂,把废水中的呈现溶解态或者是悬浮态的N、S等有毒物质及有机污染物氧化为无毒物质[33]。

它的产物有H2O、CO2、和N2。

湿式催化氧化技术的催化剂主要是复合负载型催化剂[34]。

它的制备方法采用的是浸渍法[35]。

按照一定实验的比例将硝酸铜、硝酸钴、硝酸镧配制成浸渍液,再加入载体和尿素,最后经过水浴加热和干燥即可制得。

湿式催化氧化技术的优点是流程简单、净化效率高、占地面积小。

能使焦化废水中的COD和氨氮化合物的去除率分别达到99.5%和99.8%,效果显著[36]。

但是该种方法同样存在着一些问题,比如氧化剂的溶出问题和对反应的设备的材质要求较高等问题,依然制约着湿式氧化法的发展[37]。

超临界水氧化技术超临界水氧化技术是一种能在很短的时间内将难降解的有机物氧化为CO2和H2O的一种新型废水处理技术[38]。

超临界水氧化技术是二十世纪八十年代由美国学者提出的,它能彻底破坏有机物的结构,从而达到净化废水的目的。

它是超临界流体技术中的一项新的氧化工艺。

是在水的压力和温度都超过了其临界值的情况下,以氧气或过氧化氢作为氧化剂,以超临界水作为反应介质,使水中的有机污染物和氧化剂发生氧化反应,在一定的时间内,约有99.9%的有机物会被除去。

经过一定的实验研究之后,废水中的COD的去除率能够达到99.5%以上,出水水质能达到国家一级排放标准。

焦化废水处理的最佳工艺条件是系统压力为28MPa,反应时间为60s,反应温度为580摄氏度[39]。

与其他的废水处理技术相比较,超临界水氧化技术具有以下优势:有机物的去除率高且分解彻底;所需反应器的体积小,占地面积小;反应速率快。

并且反应过程中无机盐类能比较容易实现与废水的分离,省去了过滤等后续过程,在分离过程中是处在密闭的条件下,反应过程中不会排放污水,不会产生二次污染,是一种既高效又环保的废水处理技术[40]。

但是,仍然有一些因素制约着它的发展,比如设备及工艺技术要求高、一次性投资较大并且设备的防腐问题并未完全解决。

等离子体处理技术目前脉冲放电等离子体处理技术应用于废水处理领域中来,受到了许多研究者的注意,并且在很多领域取得了成果,从化学角度来看,等离子体空间富集的离子、电子、激发态的原子、分子和自由基提供了极活泼的反应性物种,这些反应性物种在通常的化学反应中很难得到,但在等离子体中却很容易产生[41]。

这种方法不仅利用了放电产生的高能电子,同时利用放电所产生的紫外线以及气体放电所产生的臭氧,从而形成了紫外线、高能电子、臭氧等多效利用的综合作用。

等离子体技术对焦化废水中的氰化物和酚含量的处理效果比较好,原因是氰化物和酚的化学性质较活泼,容易被脉冲电晕放电所产生的各种活性物质所反应,从而有所减少[42]。

这种技术的优点是高效、低能耗、应用广泛和处理量大,但是由于处理的费用较高,还有待于进一步研究以降低操作费用[43]。

电化学氧化技术电化学技术由于其能产生强氧化性而且工艺简单,产物没有二次污染受到了许多关注[44]。

目前电化学法主要包括电解氧化法[45]、微电解法[46]、三维电极法[47]和电凝聚法。

电解氧化法分为直接阳极氧化法和间接阳极氧化法两类,其中直接氧化法是指污染物直接在阳极失去电子变成无污染物,以达到除去的目的。

而间接阳极氧化法则是通过阳极反应产生具有强氧化性的中间产物或是发生阳极反应之外的中间产物以达到氧化有机污染物的目的。

微电解法又被称作内电解法,是在最近几十年才逐渐兴起的一种废水处理技术,其过程主要是基于电化学中的电池反应,比如氧化还原、物理吸附、絮凝沉降和电富集。

由于反应过程中生成的产物就有很强的氧化还原性,可以使在常态下难以反应的污染物质被氧化为无污染物,具有操作简单、工艺简单、占地面积小和投资少的特点[48]。

三维电极法是在原来二维电解槽的电极之间填充其他粒状或其他屑状的电极材料,并且使新装的电极材料表面带电,成为新的一极,在工作电极的表面发生化学反应,从而达到使有机物降解的目的。

三维电极反应器对焦化废水中的COD 有较好的去除效果,以焦粒负载锰、锌化合物为第三极的三维电极体系中废水的降解反应符合一级反应动力学,在废水经过降解处理之后其中的难降解物会被除去,达到净化的目的。

电凝聚法是电解理论在水处理中的应用,利用电解出的阳极的金属阳离子与水中的氢氧根离子相结合形成絮粒,以达到净化的目的。

电凝聚法对焦化废水的浊度有非常好的处理效果对COD和色度的处理效果不太好。

相关主题