圆周率优秀课件
• 其中arctan(x)可由泰勒级数算出。类似方法称为“梅钦类公式”。 1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜 他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共 同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
计算机时代
• 1949年,美国制造的世上首部电脑-ENIAC(Electronic Numerical Interatorand Computer)在亚伯丁试验场启用 了。 次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑, 计算出π的2037个小数位。这部电脑只用了70小时就完成 了这项工作,扣除插入打孔卡所花的时间,等于平均两分 钟算出一位数。五年后,NORC(海军兵器研究计算机) 只用了13分钟,就算出π的3089个小数位。科技不断进步, 电脑的运算速度也越来越快,在60年代至70年代,随着美、 英、法的电脑科学家不断地进行电脑上的竞争,π的值也 越来越精确。在1973年,Jean Guilloud和M. Bouyer发现 了π的第一百万个小数位。
例如,金字塔的周长和高度之比等 于圆周率的两倍,正好等于圆的周长和半 径之比。
公元前800至600年成文的古印度宗 教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数 339/108, 约等于3.139。[3]
• 几何法时期
• 古希腊作为古代几何王国对圆周率的贡献尤为突 出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过数学算法计算圆周率近似 值的先河。他求出圆周率的下界和上界分别为 223/71 和22/7, 并取它们的平均值3.141851 为 圆周率的近似值。阿基米德用到了迭代算法和两 侧数值逼近的概念,称得上是“计算数学”的鼻 祖。
匾清楚地记载了圆周率 = 25/8 = 3.125。 同一时期的古埃及文物也表明圆周率等
于分数16/9的平方,约等于3.16。 埃及人似乎在更早的时候就知道圆周率
了。
英国作家 John Taylor (1781–1864) 在其名著《金字塔》中指出,造于公元前 2500年左右的金字塔和圆周率有关。
公元480年左右,南北朝时期的数学家祖冲之 进一步得出精确到小数点后7位的π值,给出不足 近似值3.1415926和过剩近似值3.1415927,还得 到两个近似分数值,密率355/113和约率22/7。在 之后的800年里祖冲之计算出的π值都是最准确的。 其中的密率在西方直到1573年才由德国人奥托得 到,1625年发表于荷兰工程师安托尼斯的著作中, 欧洲称之为安托尼斯率。
• 2011年10月16日,日本长野县饭田市公司职员近 藤茂利用家中电脑将圆周率计算到小数点后10万 亿位,刷新了2010年8月由他自己创下的5万亿位 吉尼斯世界纪录。今年56岁近藤茂使用的是自己 组装的计算机,从去年10月起开始计算,花费约 一年时间刷新了纪录。
• 在1976年,新的突破出现了。萨拉明(Eugene Salamin) 发表了一条新的公式,那是一条二次收敛算则,也就是说 每经过一次计算,有效数字就会倍增。高斯以前也发现了 一条类似的公式,但十分复杂,在那没有电脑的时代是不 可行的。之后,不断有人以高速电脑结合类似萨拉明的算 则来计算π的值。
• 1989年美国哥伦比亚大学研究人员用克雷-2型 和IBM-VF型巨型电子计算机计算出π值小数点 后4.8亿位数,后又继续算到小数点后10.1亿位数, 创下最新的纪录。2010年1月7日——法国一工程 师将圆周率算到小数点后27000亿位。2010年8月 30日——日本计算机奇才近藤茂利用家用计算机 和云计算相结合,计算出圆周率到小数点后5万亿 位。
圆周率优秀课件
定义:
圆周率,一般以π来表示,是一个在数学 及物理学普遍存在的数学常数。它定义为 圆形之周长与直径之比。它也等于圆形之 面积与半径平方之比。是精确计算圆周长、 圆面积、球体积等几何形状的关键值。 在 分析学上,π可以严格地定义为满足sin(x) = 0的最小正实数x。
历史发展:
• 实验时期 一块产于公元前1900年的古巴比伦石
• 约在公元530年,印度数学大师阿耶波多利 用384边形的周长,算出圆周率约为 √9.8684。婆罗门笈多采用另一套方法,推 论出圆周率等于10的算术平方根。
• 阿拉伯数学家卡西在15世纪初求得圆周率 17位精确小数值,打破祖冲之保持近千年 的纪录。德国数学家柯伦于1596年将π值算 到20位小数值,后投入毕生精力,于1610 年算到小数后35位数,该数值被用他的名 字称为鲁道夫数。
分析法时期
• 这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆
术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达 式纷纷出现,使得π值计算精度迅速增加。 • 鲁道夫·范·科伊伦(约1600年)计算出π的小数点后首35位。 • 斯洛文尼亚数学家JurijVega于1789年得出π的小数点后首140位,其 中只有137位是正确的。这个世界纪录维持了五十年。他利用了 JohnMachin于1706年提出的数式。 • 但是上述的方法都不能快速算出π。第一个快速算法由英国数学家梅 钦提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公 式:[6]
中国古算书《周髀算经》(约公元前2世纪)的 中有“径一而周三”的记载,意即取π=3。[4]汉 朝时,张衡得出π的平方除以16等于5/8,即π等 于10的开方(约为3.162)。这个值不太准确,但 它简单易理解。
公元263年,中国数学家刘徽用“割圆术”计 算圆周率,他先从圆内接正六边形,逐次分割一 直算到圆内接正192边形。他说“割之弥细,所 失弥少,割之又割,以至于不可割,则与圆周合 体而无所失矣。”,包含了求极限的思想。后来 发现3.14这个数值还是偏小。于是继续割圆到 1536边形,求出3072边形的面积,得到令自己满 意的圆周率3927/1250=3.1416。