当前位置:文档之家› 直流电机霍尔测速仪(具有红外遥控)设计报告

直流电机霍尔测速仪(具有红外遥控)设计报告

.. .…直流电机霍尔测速设计报告1340909120许绍立1340909121志铜摘要在工程实践中,经常会遇到各种需要测量转速的场合,例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。

要测速,首先要解决是采样问题。

在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。

为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。

因此转速的测试具有重要的意义。

关键词:电动机单片机传感器目录1 概述··31.1本课题设计的目的和意义··31.2数字式转速测量系统的发展背景··32 单片机·42.1 单片机STC89CC52RC介绍··43 速度检测模块·93.1霍尔传感器测量··93.2双电压比较器LM393·104 转速测量模块·144.1 转速测量方法··144.2 转速测量原理··155 显示模块·175.1 1602字符型LCD简介··176 红外遥控模块·197 系统硬件设计·228 系统软件设计·238.1 主程序流程图程序流程图··23总结··25参考文献··25附件··261.概述1.1 本设计课题的目的和意义在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。

要测速,首先要解决是采样问题。

在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。

为了能精确地测量转速外,还要保证测量1.2 数字式转速测量系统的发展背景目前国外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。

计数测速法又可分为机械式定时计数法和电子式定时计数法。

传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体的放射性材料来发生脉冲信号.2 单片机2.1STC89C52RC单片机介绍STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。

主要特性如下:1.增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051.2.工作电压:5.5V~3.3V(5V单片机)/3.8V~2.0V(3V单片机)3.工作频率围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz4.用户应用程序空间为8K字节5.片上集成512字节RAM6.通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O口用时,需加上拉电阻。

7.ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片8.具有EEPROM功能9.具有看门狗功能10.共3个16位定时器/计数器。

即定时器T0、T1、T211.外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒12.通用异步串行口(UART),还可用定时器软件实现多个UART13.工作温度围:-40~+85℃(工业级)/0~75℃(商业级)14.PDIP封装STC89C52RC单片机的工作模式●掉电模式:典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序●空闲模式:典型功耗2mA●正常工作模式:典型功耗4Ma~7mA●掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备●STC89C52RC引脚图STC89C52RC引脚功能说明VCC(40引脚):电源电压VSS(20引脚):接地P0端口(P0.0~P0.7,39~32引脚):P0口是一个漏极开路的8位双向I/O 口。

作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。

在访问外部程序和数据存储器时,P0口也可以提供低8位地址和8位数据的复用总线。

此时,P0口部上拉电阻有效。

在Flash ROM编程时,P0端口接收指令字节;而在校验程序时,则输出指令字节。

验证时,要求外接上拉电阻。

P1端口(P1.0~P1.7,1~8引脚):P1口是一个带部上拉电阻的8位双向I/O口。

P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。

对端作输入口使用时,因为有部上拉电阻,那些被外部拉低的引脚会输出一个电流()。

此外,P1.0和P1.1还可以作为定时器/计数器2的外部技术输入(P1.0/T2)和定时器/计数器2的触发输入(P1.1/T2EX),具体参见下表:在对Flash ROM编程和程序校验时,P1接收低8位地址。

表XX P1.0和P1.1引脚复用功能引脚号功能特性P1.0 T2(定时器/计数器2外部计数输入),时钟输出P1.1 T2EX(定时器/计数器2捕获/重装触发和方向控制)P2端口(P2.0~P2.7,21~28引脚):P2口是一个带部上拉电阻的8位双向I/O端口。

P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。

对端口写入1时,通过部的上拉电阻把端口拉到高电平,这时可用作输入口。

P2作为输入口使用时,因为有部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流()。

在访问外部程序存储器和16位地址的外部数据存储器(如执行“MOVX DPTR”指令)时,P2送出高8位地址。

在访问8位地址的外部数据存储器(如执行“MOVX R1”指令)时,P2口引脚上的容(就是专用寄存器(SFR)区中的P2寄存器的容),在整个访问期间不会改变。

在对Flash ROM编程和程序校验期间,P2也接收高位地址和一些控制信号。

P3端口(P3.0~P3.7,10~17引脚):P3是一个带部上拉电阻的8位双向I/O端口。

P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。

对端输入口使用时,因为有部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流()。

在对Flash ROM编程或程序校验时,P3还接收一些控制信号。

P3口除作为一般I/O口外,还有其他一些复用功能,如下表所示:表XX P3口引脚复用功能引脚号复用功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 (外部中断0)P3.3 (外部中断1)P3.4 T0(定时器0的外部输入)P3.5 T1(定时器1的外部输入)P3.6 (外部数据存储器写选通)P3.7 (外部数据存储器读选通)RST(9引脚):复位输入。

当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。

看门狗计时完成后,RST引脚输出96个晶振周期的高电平。

特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。

DISRTO默认状态下,复位高电平有效。

ALE/(30引脚):地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。

在Flash编程时,此引脚()也用作编程输入脉冲。

在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。

然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。

如果需要,通过将地址位8EH的SFR的第0位置“1”,ALE操作将无效。

这一位置“1”,ALE仅在执行MOVX或MOV指令时有效。

否则,ALE将被微弱拉高。

这个ALE使能标志位(地址位8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。

(29引脚):外部程序存储器选通信号()是外部程序存储器选通信号。

当AT89C51RC从外部程序存储器执行外部代码时,在每个机器周期被激活两次,而访问外部数据存储器时,将不被激活。

/VPP(31引脚):访问外部程序存储器控制信号。

为使能从0000H到FFFFH 的外部程序存储器读取指令,必须接GND。

注意加密方式1时,将部锁定位RESET。

为了执行部程序指令,应该接VCC。

在Flash编程期间,也接收12伏VPP电压。

XTAL1(19引脚):振荡器反相放大器和部时钟发生电路的输入端。

XTAL2(18引脚):振荡器反相放大器的输入端。

3速度检测模块3.1霍尔传感器根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。

它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

(三)霍尔传感器由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。

部原理图二、霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。

(一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。

(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

三、霍尔传感器的特性(一)线性型霍尔传感器的特性输出电压与外加磁场强度呈线性关系,如图3所示,可见,在B1~B2的磁感应强度围有较好的线性度,磁感应强度超出此围时则呈现饱和状态。

(二)开关型霍尔传感器的特性如图4所示,其中B OP为工作点“开”的磁感应强度,B RP为释放点“关”的磁感应强度。

当外加的磁感应强度超过动作点B op时,传感器输出低电平,当磁感应强度降到动作点B op以下时,传感器输出电平不变,一直要降到释放点B RP时,传感器才由低电平跃变为高电平。

B op与B RP之间的滞后使开关动作更为可靠。

3.2双电压比较器LM393LM393主要特点如下:●工作电源电压围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;●消耗电流小,Icc=0.8mA;●输入失调电压小,V IO=±2mV;●共模输入电压围宽,Vic=0~Vcc-1.5V;●输出与TTL,DTL,MOS,CMOS 等兼容;●输出可以用开路集电极连接“或”门;LM393引脚图及部框图采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)LM393部结构图LM393引脚功能排列表:LM393主要参数表:LM393是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡.这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙.电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的.减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡.除非利用滞后,否则直接插入IC并在引脚上加上电阻将引起输入—输出在很短的转换周期振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要.比较器的所有没有用的引脚必须接地.LM393偏置网络确立了其静态电流与电源电压围2.0~30V无关.通常电源不需要加旁路电容。

相关主题