当前位置:文档之家› TEM在材料科学研究中应用的最新进展

TEM在材料科学研究中应用的最新进展

TEM在材料科学研究中应用的最新进展【摘要】本文主要介绍透射电镜在材料研究中中的应用与进展,通过目前TEN 的应用的范围确定其发展趋势,主要通过在材料领域的研究分析取得成果论述TEM的进展和重要作用,通过课堂学习和资料的收集对TEM的发展和应用进行简单总结和展望。

【关键词】透射电镜;材料研究;发展方向;引言材料是现代文明的三大支柱之一。

在材料的开发研究的过程中,科研人员有了很多突破,也遇到很多困难。

开发了新材料就需要分析它的结构和性能,这就离不开材料分析测试技术。

从过去的成分分析和一般的结构分析, 发展到从微观和亚微观结构这两个层次上去寻找物质的功能与物质结构之间的内在关系, 寻找物质分子间相互作用的微观反应规律,这样。

的发展对于材料的结构和功能的分析非常有利。

正文有了透射电子显微技术(TEM)我们就能分析样品内部的精细结构,更加深入的观察和分析物质的结构和性能;有了扫描电子显微技术(SEM)我们的表面分析取得了突破性进展,电子束与物质作用产生的各种信号帮助我们进行不同方面的分析:原子衬度、表面形貌,微区分析,这些信号都有各自偏重方面的优势;有了X射线光电子能谱分析(XPS),不仅能分析成分,还能分析化学态;有了扫描隧道显微技术(STM),可直接观察样品表面发生的物理或化学反应的动态过程及反应中院子的迁移过程……我结合课堂说所了解的知识和网上的资料对近年来的TEM在材料科学中研究应用的最新进展进行简要的汇总和展望。

透射电子显教分析方法是通过透射电子显微镜(TEM-Transmissim Eleetron Microscope)进行的。

透射电镜具有最高的分辨率,如H一8O0透射电镜,分辨率可达1.4Å,所以它是最微分析的重要手段之一。

TEM在材料科学研究中的6个常见用途。

(a)利用质厚衬度(又称吸收衬度)像,对样品进行一般形貌观察;纳米材料的形貌观测文献①用控制沉淀法制备了不同形貌的碳酸钙微粉,用SEM和TEM分别对其进行了表征,并在此基础上讨论了影响产品晶形和形貌的主要因素,以期能更好地理解碳酸钙微粉的成核与生长机理。

文献②报道了利用脉冲激光法成功地制备了硅的一维纳米线的氮化硼纳米管,用对这些一维纳米材料的微观结构进行了表征,观察到了硅纳米线中存在微孪晶、堆垛层错、小角晶界等高密度的结构缺陷,并且发现这些结构缺陷与硅纳米线的生长和形貌有着密切的关系。

文献③用原子力显微镜对化学沉积Ni-Cu-P合金薄的表面形貌进行了观察,并在此基础上对多元化学沉积机理进行了初步研究。

文献④用原子力显微镜对一组TiN/TaN多层膜进行了表面形貌研究,并借助于多重分形的方法表征了不同周期多层膜的表面形貌。

文献⑤应用电子显微技术研究了以纳米碳管为媒介生长的SiO2晶须的形貌及其微结构特征,结果表明,这些晶须为六角结构,直径为数十纳米,长度可达100μm以上,生长方向一般为11-20方向,且在棱面上存在互成120°的面缺陷。

(b)利用电子衍射、微区电子衍射、会聚束电子衍射物等技术对样品进行物相分析,从而确定材料的物相、晶系,甚至空间群;纳米材料的粒径分析⑥:用透射电镜可评估纳米粒子的平均直径或粒径分布。

该方法是一种颗粒度观察测定的绝对方法,因而具有可靠性和直观性,在纳米材料表征中广泛采用。

粒径的计算可采用交叉法、最大交叉长度平均值法或粒径分布图法⑦。

电镜观察法存在一个缺点,即测量结果缺乏统计性,这是因为电镜观察使用的粉体量极少,有可能导致观察到的粉体粒子分布范围并不代表整体粉体的粒径范围。

此外,值得注意的是,由透射电镜观察法测量得到的是样品的颗粒度而不是晶粒度。

因此,在实际应用中要注意将电镜观察法测量得到的结果与用XRB法计算出的样品的颗粒度或平均晶粒度对比,以检验结果的可靠性。

(c)利用高分辨电子显微术可以直接“看”到晶体中原子或原子团在特定方向上的结构投影这一特点,确定晶体结构;如透射电子显微分析方法⑧c1.选区电子衍射与金属薄膜衍村技术:为让电镜在显示形貌图象的同时还能分析晶体结构,通常采用所谓“选区电子衍射”的方法,有选择地分析样品不同微医范围内的晶体结构特性如果我们选用的样品是金属薄膜,还可以研究析出相与母相的位向关系,孪晶面,位错等晶体缺陷,这对研究金属的精细结构有特别显著的功效,下面举一典型实饲说明其应用。

如钢中马氏体形态的精细结构观察,采用金属薄膜直接透射来研究马氏体形态,可揭示高低碳马氏体的精细亚结构,从而了解到其本质差别。

低碳马氏休呈板条状,条宽约为0.025~2.25~m(常见条宽约2500Å),条长约数微米。

精细亚结构为位错,位错密度高达0.3 ~0i9×10 /cm。

,条内位错缠结交织,呈胞状分布的特征。

因此,低碳板条马氏体又称位错马氏体。

高碳马氏悻呈片状,片的大小差别很大,且互不平行,以大角度相交。

片内的精细亚结构为孪晶,厚度约50~900Å不等,故高碳片状马氏体又称孪晶马氏体。

另外,钢中低温回火析出的碳化物,钢中残余奥氏体的测定,不锈钢中强化相析出硬化的分析观察等都可利用选用电子衍射和金属薄膜衍衬技术来完成。

c2.相变和形形过程中组织结构变化规律的分析现察:透镜配置加热样品台,低温样品台或拉伸台,可对材料进行相变机理研究及低温下微观结构变化观察和形变过程位错运动等动态观察,还可测绘新材料的台金相图。

(d)利用衍衬像和高分辨电子显微像技术,观察晶体中存在的结构缺陷,确定缺陷的种类、估算缺陷密度;(e)利用TEM所附加的能量色散X射线谱仪或电子能量损失谱仪对样品的微区化学成分进行分析;如纳米材料的微区化学成分分析以扫描电子显微镜为例,通过安装在其上的能量散射X射线能谱仪收集相关特征X射线和电子能量损失谱,可以得到纳米材料的化学组分信息,通过调节电子的加速电压可控制电子束的深度范围⑨,从而实现纳米材料的微区成分分析。

要进一步研究纳米材料中的化学成键形态,可借助X射线光电子能谱等其他测试手段。

(f)利用带有扫描附件和能量色散X射线谱仪的TEM,或者利用带有图像过滤器的TEM,对样品中的元素分布进行分析,确定样品中是否有成分偏析。

电子显微镜的最新技术和发展趋势分析⑩。

一、高性能场发射枪电子显微镜日趋普及和应用。

场发射枪透射电镜能够提供高亮度、高相干性的电子光源。

因而能在原子纳米尺度上对材料的原子排列和种类进行综合分析。

九十年代中期,全世界只有几十台;现在已猛增至上千台。

我国目前也有上百台以上场发射枪透射电子显微镜。

常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。

其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。

高真空、低真空和“环境”三种工作模式。

二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。

场发射透射电镜、STEM 技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm提高到0.12nm甚至于小于0.08nm. 利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。

聚光镜球差校正器把STEM 的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。

在球差校正的同时,色差大约增大了30%左右. 因此,校正球差的同时,也要同时考虑校正色差.三、电子显微镜分析工作迈向计算机化和网络化。

在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。

用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。

不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变, 电镜参数的调整等。

以实现对电镜的遥控作用.四、电子显微镜在纳米材料研究中的重要应用。

由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。

即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。

观察样品中的单个原子像,始终是科学界长期追求的目标。

一个原子的直径约为1千万分之2-3mm。

所以,要分辩出每个原子的位置,需要0.1nm 左右的分辨率的电镜,并把它放大约1千万倍才行。

人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。

因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以及其结构与性能之间关系的研究成为人们十分关注的研究热点。

利用电子显微镜,一般要在200KV 以上超高真空场发射枪透射电镜上,可以观察到纳米相和纳米线的高分辨电子显微镜像、纳米材料的电子衍射图和电子能量损失谱。

如,在电镜上观察到内径为0.4nm 的纳米碳管、Si-C-N 纳米棒、以及Li 掺杂Si 的半导体纳米线等。

总之:扫描电镜、透射电镜在材料科学特别纳米科学技术上的地位日益重要。

稳定性、操作性的改善使得电镜不再是少数专家使用的高级仪器,而变成普及性的工具;更高分辨率依旧是电镜发展的最主要方向;扫描电镜和透射电镜的应用已经从表征和分析发展到原位实验和纳米可视加工;聚焦离子束(FIB)在纳米材料科学研究中得到越来越多的应用;FIB/SEM双束电镜是目前集纳米表征、纳米分析、纳米加工、纳米原型设计的最强大工具;矫正型STEM (Titan)的目标:2008年实现0.5Å分辨率下的3D结构表征。

五、低温电镜技术和三维重构技术是当前生物电子显微学的研究热点。

低温电镜技术和三维重构技术是当前生物电子显微学的研究热点六、高性能CCD相机日渐普及应用于电子显微镜中CCD的优点是灵敏度高,噪音小,具有高信噪比。

在相同像素下CCD 的成像往往通透性、明锐度都很好,色彩还原、曝光可以保证基本准确,摄像头的图像解析度/分辨率也就是我们常说的多少像素,在实际应用中,摄像头的像素越高,拍摄出来的图像品质就越好,对于同一画面,像素越高的产品它的解析图像的能力也越强,但相对它记录的数据量也会大得多,所以对存储设备的要求也就高得多。

相关主题